版权声明
- 本文原创作者:谷哥的小弟
- 作者博客地址:http://blog.csdn.net/lfdfhl
特征匹配(Feature Matching)
特征匹配是中间层知识迁移的一种重要方式,通过对齐师生模型的中间层特征来实现知识的传递。具体来说,教师模型和学生模型的中间层特征图或激活值被提取出来,然后通过某种损失函数来衡量它们之间的差异,并进行优化。常用的损失函数包括L2损失和余弦相似度等。
特征匹配的优点是可以直接利用教师模型的中间层特征来指导学生模型的学习,使学生模型能够学习到更丰富的特征表示。然而,这种方法也存在一些挑战,例如教师模型和学生模型的中间层特征维度可能不同,需要进行特征对齐。
注意力转移(Attention Transfer)
注意力转移是另一种中间层知识迁移的方法,通过迁移教师模型的注意力权重或矩阵,增强学生模型对重要特征的捕捉能力。注意力机制可以帮助模型更好地关注输入数据中的关键部分,从而提高模型的性能。
-
注意力图的生成:对于一个给定的卷积神经网