Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 23806 | Accepted: 10733 |
Description
Bessie has gone to the mall's jewelry store and spies a charm bracelet. Of course, she'd like to fill it with the best charms possible from the N (1 ≤ N ≤ 3,402) available charms. Each charm i in the supplied list has a weight Wi (1 ≤ Wi ≤ 400), a 'desirability' factor Di (1 ≤ Di ≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more than M (1 ≤ M ≤ 12,880).
Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.
Input
* Line 1: Two space-separated integers: N and M
* Lines 2..N+1: Line i+1 describes charm i with two space-separated integers: Wi and Di
Output
* Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints
Sample Input
4 6 1 4 2 6 3 12 2 7
Sample Output
23
简单的背包问题~~ 水平有限暂时不能解析~~不见建议右转百度背包九讲!
#include<iostream> #include<cstring> using namespace std; int main(void){ int n,m,arrw[3500],arrd[3500],dp[20000]; cin>>n>>m; for(int i=0;i<n;i++) cin>>arrw[i]>>arrd[i]; memset(dp,0,sizeof(dp)); for(int i=1;i<=n;i++){ for(int j=m;j>=arrw[i-1];j--){ dp[j]=max(dp[j] ,dp[j-arrw[i-1]]+arrd[i-1]) ; } } cout<<dp[m]; }