人耳关键点检测的论文

这些论文探讨了利用CNNs进行人耳检测和关键点定位的技术,分别提出不同的模型,如基于ConvNet的EarKeypointsDetection和RobustEarDetection系统,以及结合姿态估计的方案,展示了深度学习在生物特征识别领域的应用潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以下是一些关于人耳关键点检测的论文:

  • "Ear Keypoints Detection based on Convolutional Neural Networks" by Qi Li, Huamin Qian, and Xiaofeng Zhuang (IEEE Access, 2019).
  • "Robust Ear Detection and Keypoint Extraction using Deep Learning" by Hao Li, Jian Sun, and Jianping Shi (CVPR, 2019).
  • "Ear Detection and Pose Estimation using Convolutional Neural Networks" by Hongjing Li, Chunhua Shen, and Anton van den Hengel (ICCV, 2017).

这些论文都涉及到人耳关键点检测,并提出了不同的方法和模型来检测人耳的关键点。它们在相关的会议或期刊上发表,并且对于该领域的研究人员具有一定的参考价值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值