特征向量的几何含义

本文转自甜蜜旮旯的博客:http://fanhy298.blog.sohu.com/130363634.html


长时间以来一直不了解矩阵的特征值和特征向量到底有何意义(估计很多兄弟有同样感受)。知道它的数学公式,但却找不出它的几何含义,教科书里没有真正地把这一概念从各种角度实例化地进行讲解,只是一天到晚地列公式玩理论——有个屁用啊。

根据特征向量数学公式定义,矩阵乘以一个向量的结果仍是同维数的一个向量,因此,矩阵乘法对应了一个变换,把一个向量变成同维数的另一个向量,那么变换的效果是什么呢?这当然与方阵的构造有密切关系,比如可以取适当的二维方阵,使得这个变换的效果就是将平面上的二维向量逆时针旋转30度,这时我们可以问一个问题,有没有向量在这个变换下不改变方向呢?可以想一下,除了零向量,没有其他向量可以在平面上旋转30度而不改变方向的,所以这个变换对应的矩阵(或者说这个变换自身)没有特征向量(注意:特征向量不能是零向量),所以一个变换的特征向量是这样一种向量,它经过这种特定的变换后保持方向不变,只是进行长度上的伸缩而已(再想想特征向量的原始定义Ax=cx, cx是方阵A对向量x进行变换后的结果,但显然cx和x的方向相同)。

这里给出一个特征向量的简单例子,比如平面上的一个变换,把一个向量关于横轴做镜像对称变换,即保持一个向量的横坐标不变,但纵坐标取相反数,把这个变换表示为矩阵就是[1 0;0 -1](分号表示换行),显然[1 0;0 -1]*[a b]'=[a -b]'(上标'表示取转置),这正是我们想要的效果,那么现在可以猜一下了,这个矩阵的特征向量是什么?想想什么向量在这个变换下保持方向不变,显然,横轴上的向量在这个变换下保持方向不变(记住这个变换是镜像对称变换,那镜子表面上(横轴上)的向量当然不会变化),所以可以直接猜测其特征向量是[a 0]'(a不为0),还有其他的吗?有,那就是纵轴上的向量,这时经过变换后,其方向反向,但仍在同一条轴上,所以也被认为是方向没有变化,所以[0 b]'(b不为0)也是其特征向量。

综上,特征值只不过反映了特征向量在变换时的伸缩倍数而已,对一个变换而言,特征向量指明的方向才是很重要的,特征值似乎不是那么重要;但是,当我们引用了Spectral theorem(谱定律)的时候,情况就不一样了。

Spectral theorem的核心内容如下:一个线性变换(用矩阵乘法表示)可表示为它的所有的特征向量的一个线性组合,其中的线性系数就是每一个向量对应的特征值,写成公式就是:

特征向量的几何含义 - hellojackey2008 - hellojackey2008的博客

从这里我们可以看出,一个变换(矩阵)可由它的所有特征向量完全表示,而每一个向量所对应的特征值,就代表了矩阵在这一向量上的贡献率——说的通俗一点就是能量(power),至此,特征值翻身做主人,彻底掌握了对特征向量的主动:你所能够代表这个矩阵的能量高低掌握在我手中,你还吊什么吊?

我们知道,一个变换可由一个矩阵乘法表示,那么一个空间坐标系也可视作一个矩阵,而这个坐标系就可由这个矩阵的所有特征向量表示,用图来表示的话,可以想象就是一个空间张开的各个坐标角度,这一组向量可以完全表示一个矩阵表示的空间的“特征”,而他们的特征值就表示了各个角度上的能量(可以想象成从各个角度上伸出的长短,越长的轴就越可以代表这个空间,它的“特征”就越强,或者说显性,而短轴自然就成了隐性特征),因此,通过特征向量/值可以完全描述某一几何空间这一特点,使得特征向量与特征值在几何(特别是空间几何)及其应用中得以发挥。

关于特征向量(特别是特征值)的应用实在是太多太多,近的比如俺曾经提到过的PCA方法,选取特征值最高的k个特征向量来表示一个矩阵,从而达到降维分析+特征显示的方法;近的比如Google公司的成名作PageRank,也是通过计算一个用矩阵表示的图(这个图代表了整个Web各个网页“节点”之间的关联)的特征向量来对每一个节点打“特征值”分;再比如很多人脸识别,数据流模式挖掘分析等方面,都有应用,有兴趣的兄弟可以参考IBM的Spiros在VLDB‘ 05,SIGMOD ’06上的几篇文章。

特征向量不仅在数学上,在物理,材料,力学等方面(应力、应变张量)都能一展拳脚,有老美曾在一本线代书里这样说过“有振动的地方就有特征值和特征向量”,确实令人肃然起敬+毛骨悚然......

  • 10
    点赞
  • 38
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
### 回答1: 向量叉乘向量的结果是一个向量,这个向量垂直于原来两个向量所在的平面,并且方向由右手定则决定。如果再用这个向量叉乘原来的其中一个向量,得到的向量就是三个向量构成的体积。这个体积的大小等于原来两个向量所在平面上的平行四边形的面积,方向由右手定则决定。因此,向量叉乘向量再叉乘向量的几何意义是计算三个向量所构成的体积。 ### 回答2: 向量的叉乘是指给定两个向量,通过运算得到一个新的向量。当一个向量与另一个向量进行叉乘后再与另一个向量再次进行叉乘,这种操作的几何意义是构造一个垂直于原始平面的新向量。 具体来说,假设有向量A和向量B,根据向量的叉乘定义,得到向量C=A×B。向量C垂直于原始平面,其方向可由右手法则确定。意味着C与向量A和向量B共面,并且C的大小等于A和B所在平面的面积乘以sinθ,其中θ为A和B之间的夹角。 当我们将C与向量B进行叉乘后,得到向量D=C×B。向量D不再垂直于原始平面,而是沿着A和B共线的方向。这是因为向量B的方向与向量C共面,所以向量D与向量C共线,并且其方向由右手法则确定。向量D的大小等于C和B所在平面的面积乘以sinφ,其中φ为C和B之间的夹角。 因此,当一个向量与另一个向量进行叉乘后再与另一个向量再次进行叉乘时,结果向量沿着原始平面的垂直方向和共线方向分别表达了原始平面的法向量和垂直向量。这种操作可以用于计算平面的法线方向、计算两个向量构成的平面的面积,或者用于构造与多个向量共面且垂直于它们的向量。 ### 回答3: 向量的叉乘是一种在三维空间中定义的运算,它用来产生一个新的向量,该向量与原来的两个向量垂直,并且符合右手法则。向量的叉乘有一个重要的几何意义,即两个向量的叉乘结果可以得到一个垂直于这两个向量所构成的平面的向量。 当我们对一个向量a叉乘向量b再叉乘向量c时,可以表示为(a×b)×c。这个结果代表了一个新的向量,它垂直于向量a×b和向量c所构成的平面。具体来说,向量a×b所表示的是一个平面,而向量c在该平面上的垂直向量,所以(a×b)×c表示了平面上的一个垂直于该平面的向量。 几何意义上来讲,向量a×b表示了由向量a和向量b所构成的平面的法向量,而(a×b)×c则表示了由向量a、向量b和向量c所构成的平面的法向量。具体来说,这个法向量垂直于这个平面并指向其中一个方向。这个结果在三维几何中有广泛的应用,例如计算平面的法向量、计算线段之间的夹角等。 总之,向量的叉乘向量再叉乘向量的几何意义是得到一个垂直于两个向量构成的平面的向量,它在几何上表示了这个平面的法向量,可以用来解决与平面相关的几何问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值