KBQA 常用数据集之MetaQA

本文详细介绍了MetaQA数据集,涵盖Vanilla、NTM文本和音频数据,知识库来自MovieQA的 Wikidata。研究了MetaQA上各类模型的性能,如KV-MemNN、VRN、GRAFT-Net等,并展示了从知识图谱到复杂问答的处理方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1. 论文相关

2. 数据集概述

     2.1  内容介绍

     2.2 使用的知识库

     2.3 数据统计

     2.4 文件内容介绍 

3. 模型性能比较


1. 论文相关

      MetaQA [Zhang et al., 2018]
      源自论文:Variational reasoning for question answering with knowledge graph

      数据集:https://github.com/yuyuz/MetaQA(也可以直接点击下边链接下载数据集:https://drive.google.com/drive/folders/0B-36Uca2AvwhTWVFSUZqRXVtbUE?resourcekey=0-kdv6ho5KcpEXdI2aUdLn_g

       各种模型在MetaQA上的性能比较:MetaQA Dataset | Papers With Code

2. 数据集概述

       MetaQAMovie Text Audio QA的缩写。

     2.1  内容介绍

       数据集提供问答对,不提供SPARQL查询。这个数据集包括3个主要的组件:

       ① Vanilla text data

       它总共有三个数据集:1-hop,2-hop,3-hop。其中1-hop源自Facebook MovieQA(也称 WikiMovies)数据集中的"wiki_entities"分支,相比MovieQA,Vanilla 1-hop 移除了问题中有歧义的实体,故该数据集也相对较小。

        2-hop和3-hop也源于同一个知识库。其中2-hop有21种问题类型,3-hop有15种问题类型,每种类型都有10种文本模板。(如下图所示)

                    

       ② NTM(Neural translation model) text data

        在神经翻译模型的帮助下,可以自动引入更多的问题变量。我们将Vanilla数据集中的每个问题翻译成法语,然后用beam search 将其翻译回英语,以得到一个释义问题。实体被证实保留在释义问题中。

        ③ Audio data

        用 Google text-to-speech API 读取Vanilla数据集中所有的问题并将音频保存为mp3文件。为了用户的方便,我们还提供对每个问题提取的MFCC特征。

     2.2 使用的知识库

       MetaQA中的所有问题都是从MovieQA中的电影知识库Wikidata中生成的。

       知识库中存储的三元组形式: subject|relation|object

       例:

        

     2.3 数据统计

         该数据集给1-hop,2-hop,3-hop分别提供了train / dev / test ,且所有组件数据划分相同。数据集划分情况如下:

MetaQA数据集划分情况
1-hop2-hop3-hop
Train96,106118,980114,196
Dev9,99214,87214,274
Test9,94714,87214,274

     2.4 文件内容介绍 

        kb.txt:知识库。每行都是一个知识三元组。

        qa_(test/train/dev)_qtype.txt:问题类型相关文件(将性能分解为不同的问题类型,通常用于QA系统的评估)

        entity(文件夹):存储了知识库中所有实体的音频。 

        entity_mp3.tar.gz:初始的MP3文件(与kb_entity_dict.txt中的索引顺序一致);

        kb_entity_dict.txt:有索引的实体(从0开始);

        kb_entity.npz:提取到的每个实体的MFCC特征。

3. 模型性能比较

      这一部分主要是根据我看的论文进行了整理,在MetaQA数据集上的性能比较。

各模型在MetaQA数据集上的表现
模型(年份)跳数

Vanilla

Hit@1

论文代码链接

KV-Mem(KV-MemNN)(2016)

1-hop 2-hop 3-hop

95.8

25.1

10.1

Key-Value Memory Networks for Directly Reading Documents | Papers With Code
VRN(2017)1-hop 2-hop 3-hop

97.5

89.9

62.5

Variational Reasoning for Question Answering with Knowledge GraphGitHub - yuyuz/Variational-Reasoning-Networks
GRAFT-Net(2018)1-hop 2-hop 3-hop

97.0

94.8

77.2

https://github.com/haitian-sun/GraftNet
PullNet(2019)1-hop 2-hop 3-hop

97.0

99.9

91.4

SRN(2020)1-hop 2-hop 3-hop

97.0

95.1

75.2

EmbedKGQA(2020)1-hop 2-hop 3-hop
97.5
98.8 
94.8
https://github.com/malllabiisc/EmbedKGQA
ReifKB(2020)
<可微>

1-hop

2-hop

3-hop

96.2

81.1

72.3

Scalable neural methods for reasoning with a symbolic knowledge base

RecHyperNet(2021)

1-hop

2-hop

3-hop

99.1

99.2

95.0

Knowledge Base Question Answering through Recursive Hypergraphs
TransferNet(2021)1-hop 2-hop 3-hop
97.5 
100
100
TransferNet: An Effective and Transparent Framework for Multi-hop Question Answering over Relation Graph https://github.com/shijx12/TransferNet
NSM(2021)1-hop 2-hop 3-hop

97.1 

99.9

98.9


Improving Multi-hop Knowledge Base Question Answering by Learning Intermediate Supervision Signals
https://github.com/​​​​RichardHGL/WSDM2021_NSM
BART-large(2021)3-hop99.9Unseen Entity Handling in Complex Question Answering over Knowledge Base via Language Generation

以上整理的内容若有不正确的地方,欢迎大家评论补充~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值