js中避免全局变量冗杂的解决方式

1.在开发前端当中,经常会定义一些全局变量,想在整个js中的方法都能使用,但是在一个js中定义全局变量后,会出现在其它js冗杂的问题,所以对变量的定义还得注意重名等问题.

解决方式:

在js中定义匿名函数

(function () {})();//后面的()是运行函数的意思

在匿名函数中进行开发,主要利用函数内的变量作用域,避免产生全局变量,影响整体页面环境,增加代码的兼容性。

 

2.jQuery中的$(function(){...});和js原生的$(document).ready(function(){...});是等效的,优于window.onload,后者必须等到页面内包括图片的所有元素加载完毕后才能执行。

### 熵权法中的信息熵与冗杂度 在熵权法中,信息熵用于衡量系统的无序程度或不确定性。对于给定的一组数据,如果这些数据非常均匀分布,则其信息熵较高;反之,如果数据集中于某些特定值,则信息熵较低。 #### 信息熵定义 信息熵 \( H \) 可以通过下述公式计算[^1]: \[ H_j = -k \sum_{i=1}^{n} p_{ij} \log(p_{ij}) \] 其中, - \( k \) 是常数; - \( n \) 表示样本数量; - \( p_{ij} \) 表示第 \( i \) 个对象关于第 \( j \) 项指标的概率密度函数。 当某个属性下的所有概率都相等时,该属性的信息熵达到最大值。此时意味着此属性无法提供任何有用区分信息,即具有最高冗杂度。 #### 冗杂度解释 冗杂度反映了某一特征变量所提供的有效信息量大小。具体来说,在多维数据分析场景里,若某维度的数据变化很小甚至几乎不变动(比如大部分数值相同),那么这个维度就具备较高的冗杂度。高冗杂度表明这一维度对整体分析贡献较少有价值的信息,可能需要考虑去除或者转换处理来提高模型性能。 因此,在应用熵权法评估各评价指标的重要性权重过程中,会优先保留那些低冗杂度、能提供更多独特信息的特性作为主要考量因素。 ```python import numpy as np def calculate_entropy(data): """ 计算单列数据的信息熵 参数: data (list or array): 输入数据列表 返回: float: 数据集的信息熵 """ probabilities = [] total = sum(data) for value in set(data): prob = data.count(value)/total probabilities.append(prob) entropy = -np.sum([p * np.log2(p) for p in probabilities]) return entropy ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值