【魔训】数学表达式: 从恐惧到单挑系列作业第4天

本文解析了图的邻接矩阵表示法,并定义了无向网络的概念。通过具体实例介绍了树的元组表示方法,包括节点、根节点、父节点等关键概念,还探讨了三叉树的child数组表示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先给出闵老师的课程链接:https://blog.csdn.net/minfanphd/category_11236630.html


11.4 练习: 写出该无向图的邻接矩阵.

答:
[0111101011011010] \begin{bmatrix} 0&1&1&1 \\ 1&0&1&0 \\ 1&1&0&1 \\ 1&0&1&0 \\ \end{bmatrix} 0111101011011010

11.5 定义无向网络.

答:Definition 11.5 A undirected net is a tuple G = (V,w)\mathbf{V}, w)V,w) , and w:V×V→Rw: \mathbf{V} \times \mathbf{V} \to \mathbb{R}w:V×VR is the weight function where w(vi,vj)w(v_i, v_j)w(vi,vj) is the weight of the edge (vi,vj)(v_i, v_j )(vi,vj) and satisfy w(vi,vj)=w(vj,vi)w(v_i, v_j) = w(v_j, v_i)w(vi,vj)=w(vj,vi).

12.4
1.自己画一棵树, 将其元组各部分写出来 (特别是函数 ppp).
2.针对该树, 将代码中的变量值写出来 (特别是 parent 数组).

答:1.
在这里插入图片描述
V={v0,v1,v2,v3,v4}\mathbf{V}=\{v0,v1,v2,v3,v4\}V={v0,v1,v2,v3,v4}
r=v0r=v0r=v0
p(v3)=v2,p(v4)=v2,p(v2)=v0,p(v1)=v0,p(v0)=ϕp(v3)=v2,p(v4)=v2,p(v2)=v0,p(v1)=v0,p(v0)=\phip(v3)=v2,p(v4)=v2,p(v2)=v0,p(v1)=v0,p(v0)=ϕ


  1. n=5n=5n=5
    root=0root=0root=0
    parent={−1,0,0,1,1}parent=\{-1,0,0,1,1\}parent={10011}

13.4

  1. 画一棵三叉树, 并写出它的 child 数组.
  2. 按照本贴风格, 重新定义树. 提示: 还是应该定义 parent 函数, 字母表里面只有一个元素.
    3.根据图、树、m-叉树的学习, 谈谈你对元组的理解.

答:1、
在这里插入图片描述
child={{1,2,3},{−1,−1,−1},{4,−1,5},{−1,−1,−1},{−1,−1,−1},{−1,−1,−1}}child=\{\{1,2,3\},\{-1,-1,-1\},\{4,-1,5\}, \\ \{-1,-1,-1\},\{-1,-1,-1\},\{-1,-1,-1\}\}child={{1,2,3},{1,1,1},{4,1,5},{1,1,1},{1,1,1},{1,1,1}}


Let ϕ\phiϕ be the empty node, a tree is a quadruple BT=(V,r,Σ,c)BT = (\mathbf{V}, r, \Sigma, c)BT=(V,r,Σ,c) where

  • V\mathbf{V}V is the set of nodes;
  • r∈Vr \in \mathbf{V}rV is the root node;
  • Σ={p}\Sigma = \{p\}Σ={p} is the alphabet, ;
  • c:V×Σ∗→V∪{ϕ}c: \mathbf{V} \times \Sigma^* \to \mathbf{V} \cup \{\phi\}c:V×ΣV{ϕ} satisfying
    • ∀v∈V,∃1s∈Σ∗st.c(v,s)=r\forall v \in \mathbf{V}, \exists 1 s \in \Sigma^* \mathrm{st.} c(v,s)=rvV,1sΣst.c(v,s)=r.

元组非常好用,突破了传统函数、集合、向量、矩阵的定义形式。能够将任意形式的元素进行组合,能对几乎所有不好定义的东西定义出来。能将非公式化的东西以数学形式的方式定义出来。非常好!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值