首先给出闵老师的课程链接:https://blog.csdn.net/minfanphd/category_11236630.html
11.4 练习: 写出该无向图的邻接矩阵.
答:
[0111101011011010]
\begin{bmatrix}
0&1&1&1 \\
1&0&1&0 \\
1&1&0&1 \\
1&0&1&0 \\
\end{bmatrix}
⎣⎢⎢⎡0111101011011010⎦⎥⎥⎤
11.5 定义无向网络.
答:Definition 11.5 A undirected net is a tuple G = (V,w)\mathbf{V}, w)V,w) , and w:V×V→Rw: \mathbf{V} \times \mathbf{V} \to \mathbb{R}w:V×V→R is the weight function where w(vi,vj)w(v_i, v_j)w(vi,vj) is the weight of the edge (vi,vj)(v_i, v_j )(vi,vj) and satisfy w(vi,vj)=w(vj,vi)w(v_i, v_j) = w(v_j, v_i)w(vi,vj)=w(vj,vi).
12.4
1.自己画一棵树, 将其元组各部分写出来 (特别是函数 ppp).
2.针对该树, 将代码中的变量值写出来 (特别是 parent 数组).
答:1.
V={v0,v1,v2,v3,v4}\mathbf{V}=\{v0,v1,v2,v3,v4\}V={v0,v1,v2,v3,v4}
r=v0r=v0r=v0
p(v3)=v2,p(v4)=v2,p(v2)=v0,p(v1)=v0,p(v0)=ϕp(v3)=v2,p(v4)=v2,p(v2)=v0,p(v1)=v0,p(v0)=\phip(v3)=v2,p(v4)=v2,p(v2)=v0,p(v1)=v0,p(v0)=ϕ
- n=5n=5n=5
root=0root=0root=0
parent={−1,0,0,1,1}parent=\{-1,0,0,1,1\}parent={−1,0,0,1,1}
13.4
- 画一棵三叉树, 并写出它的 child 数组.
- 按照本贴风格, 重新定义树. 提示: 还是应该定义 parent 函数, 字母表里面只有一个元素.
3.根据图、树、m-叉树的学习, 谈谈你对元组的理解.
答:1、
child={{1,2,3},{−1,−1,−1},{4,−1,5},{−1,−1,−1},{−1,−1,−1},{−1,−1,−1}}child=\{\{1,2,3\},\{-1,-1,-1\},\{4,-1,5\}, \\
\{-1,-1,-1\},\{-1,-1,-1\},\{-1,-1,-1\}\}child={{1,2,3},{−1,−1,−1},{4,−1,5},{−1,−1,−1},{−1,−1,−1},{−1,−1,−1}}
Let ϕ\phiϕ be the empty node, a tree is a quadruple BT=(V,r,Σ,c)BT = (\mathbf{V}, r, \Sigma, c)BT=(V,r,Σ,c) where
- V\mathbf{V}V is the set of nodes;
- r∈Vr \in \mathbf{V}r∈V is the root node;
- Σ={p}\Sigma = \{p\}Σ={p} is the alphabet, ;
- c:V×Σ∗→V∪{ϕ}c: \mathbf{V} \times \Sigma^* \to \mathbf{V} \cup \{\phi\}c:V×Σ∗→V∪{ϕ} satisfying
- ∀v∈V,∃1s∈Σ∗st.c(v,s)=r\forall v \in \mathbf{V}, \exists 1 s \in \Sigma^* \mathrm{st.} c(v,s)=r∀v∈V,∃1s∈Σ∗st.c(v,s)=r.
元组非常好用,突破了传统函数、集合、向量、矩阵的定义形式。能够将任意形式的元素进行组合,能对几乎所有不好定义的东西定义出来。能将非公式化的东西以数学形式的方式定义出来。非常好!