题目
如果序列 X_1, X_2, …, X_n 满足下列条件,就说它是 斐波那契式 的:
n >= 3
对于所有 i + 2 <= n,都有 X_i + X_{i+1} = X_{i+2}
给定一个严格递增的正整数数组形成序列,找到 A 中最长的斐波那契式的子序列的长度。如果一个不存在,返回 0 。
(回想一下,子序列是从原序列 A 中派生出来的,它从 A 中删掉任意数量的元素(也可以不删),而不改变其余元素的顺序。例如, [3, 5, 8] 是 [3, 4, 5, 6, 7, 8] 的一个子序列)
示例 1:
输入: [1,2,3,4,5,6,7,8]
输出: 5
解释:
最长的斐波那契式子序列为:[1,2,3,5,8] 。
示例 2:
输入: [1,3,7,11,12,14,18]
输出: 3
解释:
最长的斐波那契式子序列有:
[1,11,12],[3,11,14] 以及 [7,11,18] 。
提示:
3 <= A.length <= 1000
1 <= A[0] < A[1] < … < A[A.length - 1] <= 10^9
(对于以 Java,C,C++,以及 C# 的提交,时间限制被减少了 50%)
思路
每个斐波那契式的子序列都依靠两个相邻项来确定下一个预期项。例如,对于 2, 5,我们所期望的子序列必定以 7, 12, 19, 31 等继续。
我们可以使用 Set 结构来快速确定下一项是否在数组 A 中。由于这些项的值以指数形式增长,最大值 <=10^9的斐波那契式的子序列最多有 43 项。
算法
对于每个起始对 A[i], A[j],我们保持下一个预期值 y = A[i] + A[j] 和此前看到的最大值 x = A[j]。如果 y 在数组中,我们可以更新这些值 (x, y) -> (y, x+y)。
此外,由于子序列的长度大于等于 3 只能是斐波那契式的,所以我们必须在最后进行检查 ans >= 3 ?
代码
class Solution(object):
def lenLongestFibSubseq(self, A):
"""
:type A: List[int]
:rtype: int
"""
S = set(A)
ans = 0
for i in xrange(len(A)):
for j in xrange(i+1, len(A)):
x, y = A[j], A[i] + A[j]
length = 2
while y in S:
x, y = y, x + y
length += 1
ans = max(ans, length)
return ans if ans >= 3 else 0