NLP--day(5)(贝叶斯)

本文深入探讨了贝叶斯公式及其在文本分类中的应用。介绍了贝叶斯模型的目标,即通过后验概率最大化进行分类,并解释了算法过程。同时,文章提到了朴素贝叶斯模型的优点,如简单实现和低时空开销,以及缺点,主要在于假设特征间独立,这在数据中不常见。最后,讨论了朴素贝叶斯在处理标称型数据时的效果。
摘要由CSDN通过智能技术生成

贝叶斯公式

在这里插入图片描述

贝叶斯模型描述

给定条件

假设我们的分类模型样本是:
在这里插入图片描述
代表有m个样本,每个样本有n个特征,特征输出有K个类别,定义为 C 1 , C 2 , . . . . . C k C_1,C_2,.....C_k C1,C2,.....Ck

目标

在以上给定条件后,我们希望贝叶斯模型能通过给定样本 X t e s t = ( x 1 t e s t , x 2 t e s t , . . . . x n t e s t ) X^{test}=(x_1^{test},x_2^{test},....x_n^{test}) Xtest=(x1test,x2test,....xntest)
,通过后验概率最大化来判断分类,预测出 P ( Y = C K ∣ X = X t e s t ) P(Y=C_K|X=X^{test}) P(Y=CKX=Xtest)

推理过程

已知要求 P ( Y = C K ∣ X = X t e s t ) P(Y=C_K|X=X^{test}) P(Y=C

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值