贝叶斯公式
贝叶斯模型描述
给定条件
假设我们的分类模型样本是:
代表有m个样本,每个样本有n个特征,特征输出有K个类别,定义为 C 1 , C 2 , . . . . . C k C_1,C_2,.....C_k C1,C2,.....Ck
目标
在以上给定条件后,我们希望贝叶斯模型能通过给定样本 X t e s t = ( x 1 t e s t , x 2 t e s t , . . . . x n t e s t ) X^{test}=(x_1^{test},x_2^{test},....x_n^{test}) Xtest=(x1test,x2test,....xntest)
,通过后验概率最大化来判断分类,预测出 P ( Y = C K ∣ X = X t e s t ) P(Y=C_K|X=X^{test}) P(Y=CK∣X=Xtest)
推理过程
已知要求 P ( Y = C K ∣ X = X t e s t ) P(Y=C_K|X=X^{test}) P(Y=C