1074. 元素和为目标值的子矩阵数量

该博客介绍了如何利用二维前缀和计算技巧,解决LeetCode上的一个问题——找出矩阵中和为目标值的子矩阵数量。通过计算每个位置的前缀和,并暴力枚举矩阵的左上角和右下角,可以有效地求解目标和出现的次数。代码中详细展示了如何实现这一算法。
摘要由CSDN通过智能技术生成

题目链接:https://leetcode-cn.com/problems/number-of-submatrices-that-sum-to-target/

思路:计算出二维前缀和,然后暴力枚举左上角和右下角(两个坐标确定一个矩阵)即可。

二维前缀和公式:sum[i][j] = matrix[i][j] + sum[i][j - 1] + sum[i - 1][j] - sum[i - 1][j - 1] 其他的就是边界处理上的细节了,这里不做说明了(很简单~~~)。

枚举的矩阵的元素总和公式:w = sum[x][y] - sum[i - 1][y] - sum[x][j - 1] + sum[i - 1][j - 1](左上角坐标为(i,j),右下角坐标为(x,y))其他的就是边界处理上的细节了,这里不做说明了(很简单~~~)。

上代码:

class Solution {
    fun numSubmatrixSumTarget(matrix: Array<IntArray>, target: Int): Int {
        val sum = Array(size = matrix.size, init = { IntArray(matrix[0].size) })
        for (i in matrix.indices) {
            for (j in matrix[0].indices) {
                when {
                    i == 0 && j == 0 -> sum[i][j] = matrix[i][j]
                    i == 0 -> sum[i][j] = matrix[i][j] + sum[i][j - 1]
                    j == 0 -> sum[i][j] = matrix[i][j] + sum[i - 1][j]
                    else -> sum[i][j] = matrix[i][j] + sum[i][j - 1] + sum[i - 1][j] - sum[i - 1][j - 1]
                }
            }
        }
        var result = 0
        for (i in matrix.indices) {
            for (j in matrix[0].indices) {
                for (x in i until matrix.size) {
                    for (y in j until matrix[0].size) {
                        val w = when {
                            i == 0 && j == 0 -> sum[x][y]
                            i == 0 -> sum[x][y] - sum[x][j - 1]
                            j == 0 -> sum[x][y] - sum[i - 1][y]
                            else -> sum[x][y] - sum[i - 1][y] - sum[x][j - 1] + sum[i - 1][j - 1]
                        }
                        if (w == target) {
                            result++
                        }
                    }
                }
            }
        }
        return result
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心脏dance

如果解决了您的疑惑,谢谢打赏呦

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值