题目描述
已知数a,p,b,求满足a^x≡b(mod p)的最小自然数x。
输入格式
每个测试文件中最多包含100组测试数据。
每组数据中,每行包含3个正整数a,p,b。
当a=p=b=0时,表示测试数据读入完全。
输出格式
对于每组数据,输出一行。
如果无解,输出“No Solution”(不含引号),否则输出最小自然数解。
输入输出样例
输入 #1复制
5 58 33
2 4 3
0 0 0
输出 #1复制
9
No Solution
说明/提示
100%的数据,a,p,b≤1e9。
题意:求满足a^x≡b(mod p)的最小自然数x
题解:BSGS模板题,不解释
上代码:
#include <iostream>
#include <algorithm>
#include <cmath>
#include <tr1/unordered_map>
using namespace std::tr1;
using namespace std;
void exgcd(int a,int &x,int b,int &y){//ax+by=1
if(!b){
x=1;y=0;
return ;
}
exgcd(b,y,a%b,x);
y-=a/b*x;
}
int inverse(int x,int y){//x^(-1)(mod y) <=> x*x^(-1)+y*k=1
int inv_x,k;
exgcd(x,inv_x,y,k);
return (inv_x%y+y)%y;
}
int BSGS(int a,int b,int c){//a^x=b(mod c)
//特判答案<=100的情况
for(int x=0,pow_a_x=1%c;x<=100;++x){
if(pow_a_x==b)return x;
pow_a_x=(long long)pow_a_x*a%c;
}
//通过预处理使得a,c互质
int base_count=0,D=1;
while(1){
int d=__gcd(a,c);
if(d==1)break;
if(b%d)return -1;
b/=d;c/=d;
D=(long long)D*(a/d)%c;
++base_count;
}
b=(long long)b*inverse(D,c)%c;
//解a^(x-base_count)=b(mod c)
int n=sqrt(c);
unordered_map<int,int>hash_table;
int pow_a_j=1;
for (int j = 1; j <= n;++j){
pow_a_j=(long long)pow_a_j*a%c;
hash_table[(long long)pow_a_j*b%c]=j;
}
int pow_a_n=pow_a_j,pow_a_in=1,max_i=(c+n-1)/n;
for (int i = 1; i <= max_i;++i){
pow_a_in=(long long)pow_a_in*pow_a_n%c;
if(hash_table.count(pow_a_in)) return i*n-hash_table[pow_a_in]+base_count;
}
return -1;
}
int main(){
int a,p,b;
while(scanf("%d%d%d",&a,&p,&b)){
if(a==0&&p==0&b==0) break;
int w=BSGS(a,b,p);
if(w==-1) puts("No Solution");
else printf("%d\n",w);
}
return 0;
}