豆瓣评分9.9 ! 送你霸榜好书看懂Tensorflow 2!

这本书是机器学习和深度学习领域的经典之作,新版基于TensorFlow2和Scikit-Learn更新,内容丰富,适合初学者和工程师。书中包含理论与实践结合的案例,提供GitHub代码,是AI项目的实用参考。Keras之父和前谷歌工程师联袂推荐,助你快速掌握最新技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

注:文末将送2本正版纸质图书

传说中的机器学习“四大名著”中最适合入门的一本——“蜥蜴书”新版来了!

这本书的英文原版是美国亚马逊AI霸榜图书,在人工智能、计算机神经网络、计算机视觉和模式识别三大榜单中,均为榜首!

国内外好评率均超90%!

读者纷纷表示,希望能出中文版。

现在,中文版来了!

被国内外工程师们奉为“最强存在”的神书,闭眼入即可。

越早看,越受益!

如果你是是AI初学者,正在寻求一个切入点,那么强烈建议你把本书当作入门教材。

如果你是AI工程师,需要使用机器学习或者深度学习算法解决实际问题,可将本书当作实战手册,它可以让你了解深度学习的最新研究成果和实用技巧。

这本书能带给我什么?

对于想要踏入机器学习和深度学习领域的初学者和工程师而言,一本理论和实践相结合的书籍是必不可少的,本书就是这样一本书。

理论上讲,本书最大的特色就是有深度,覆盖面广,但是书中并没有太多复杂的数学公式推导,很容易看懂。这在现在很多机器学习书籍中是不多见的。

从实战来说,本书使用了当前热门的机器学习框架Scikit-Learn及深度学习框架 TensorFlow和Keras,每一章都配备相应的项目示例,代码的实操性和可读性非常好。

本书也是为有经验的工程师而写的,是一本实用指南。特别是附录 B 给出的机器学习项目清单,如果工业界想做一套机器学习的解决方案,完全可以按照这个清单去做。

我看过第一版了,还要买第二版吗?

需要。第二版基于最新的TensorFlow 2和新版Scikit-Learn全面升级,内容增加近一倍。作者对书中的代码和习题也进行了全面更新,帮你更快进阶,掌握业界最新研究成果。

此外,本书还得到了Keras之父的鼎力推荐,作者本人也是前谷歌工程师,机器学习资深顾问

阅读体验如何?

本书保持了O'REILLY精品图书一贯的严谨、清晰风格,通过代码注释附注说明全面讲解知识点,配套GitHub代码、习题与答案,清楚明了

实拍视频介绍

学习是对自己最好的投资!一本好书是1024程序员节送自己的最好礼物!

点击下方链接,即可优惠购书,即刻发货!书到用时方恨少,赶紧入手“蜥蜴书”,动手练起来吧!

《机器学习实战:基于Scikit-Learn、Keras和TensorFlow(原书第2版)》

AI霸榜书重磅更新!“美亚”AI+神经网络+CV三大畅销榜首图书,基于TensorFlow 2和新版Scikit-Learn全面升级,内容增加近一倍!前谷歌工程师撰写,Keras之父和TensorFlow移动端负责人鼎力推荐,从实践出发,手把手教你从零开始搭建起一个神经网络。

【赠书福利】

本次为大家送出2本“新版蜥蜴书”!10月11日22点结束并开奖。中奖读者将被免费寄送!

参与方法:

1、文末点 在看 

2、公众号后台、或者扫以下码,回复 168 ,参与抽奖!

也可直接长按下述购买二维码:

利用Python爬取豆瓣电影Top250的评分排行数据通常涉及到网络爬虫技术,可以使用像requests、BeautifulSoup或Scrapy这样的库。以下是一个简单的步骤概述: 1. **安装必要的库**:首先需要安装`requests`用于发HTTP请求,以及如`lxml`或`beautifulsoup4`处理HTML内容。 ```bash pip install requests beautifulsoup4 ``` 2. **获取网页源码**:使用requests库向豆瓣电影的API(实际上豆瓣不提供直接的电影Top250数据,你需要访问其网站)发GET请求并获取HTML源码。 ```python import requests url = &#39;https://movie.douban.com/top250&#39; response = requests.get(url) ``` 3. **解析HTML**:然后通过BeautifulSoup解析HTML,找到包含电影信息的部分。例如,电影标题和评分可能位于`<div>`标签内,CSS选择器会派上用场。 ```python from bs4 import BeautifulSoup soup = BeautifulSoup(response.text, &#39;lxml&#39;) movies = soup.find_all(&#39;li&#39;, class_=&#39;item&#39;) ``` 4. **提取数据**:遍历每个电影元素,提取出关键信息,如电影名、评分等,并将它们存储到列表或字典中。 ```python data = [] for movie in movies: title = movie.find(&#39;span&#39;, class_=&#39;title&#39;).text rating = float(movie.find(&#39;span&#39;, class_=&#39;rating_num&#39;).text) data.append({&#39;title&#39;: title, &#39;rating&#39;: rating}) ``` 5. **保存数据**:最后,你可以选择将数据保存到CSV文件、数据库或者直接打印出来。 ```python import csv with open(&#39;douban_movies.csv&#39;, &#39;w&#39;, newline=&#39;&#39;, encoding=&#39;utf-8&#39;) as file: writer = csv.DictWriter(file, fieldnames=[&#39;title&#39;, &#39;rating&#39;]) writer.writeheader() writer.writerows(data) ``` 注意:实际操作时需遵守豆瓣的robots.txt规则,并可能遇到反爬机制。此外,频繁抓取可能会被封IP,因此推荐使用模拟用户行为的方式,如设置延迟或使用代理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值