746. 使用最小花费爬楼梯

这篇博客解析了一个使用动态规划求解的LeetCode题目,通过建立状态转移方程,详细介绍了如何找到达到楼层顶部的最小花费。博主首先给出了基本的动态规划解法,然后优化了空间复杂度,利用滚动数组将空间复杂度降至O(1)。
摘要由CSDN通过智能技术生成

1、题目描述

 2、题目解析

本题使用动态规划来解决比较简便,难点在于找到对应的递推公式。

根据题意分析,假设数组 cost 的长度为 n,则 n 个阶梯分别对应下标 0 到 n-1,楼层顶部对应下标 n,问题等价于计算达到下标 n 的最小花费。

  • 创建长度为 n+1 的数组 dp,其中 dp[i] 表示达到下标 i 的最小花费。
  • 由于可以选择下标 0 或 1 作为初始阶梯,因此有 dp[0]=dp[1]=0。
  • 当 2≤i≤n 时,可以从下标 i−1 使用 cost[i−1] 的花费达到下标 i,或者从下标 i−2 使用 cost[i−2] 的花费达到下标 i。为了使总花费最小,dp[i] 应取上述两项最小值,因此状态转移方程如下:
    dp[i]=min(dp[i−1]+cost[i−1],dp[i−2]+cost[i−2]) 

    依次计算 dp 中的每一项的值,最终得到的 dp[n] 即为达到楼层顶部的最小花费。

因此根据上面的分析,实现代码如下:

class Solution {
      public int minCostClimbingStairs(int[] cost) {
          int n = co
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值