Hadoop
文章平均质量分 71
记录和分享hadoop生态圈相关知识和技能相关文章。
lhdz_bj
大学毕业至今,一直深耕于数据库领域20余载,擅长数据库优化、数据库分析诊断、数据库规划设计等,曾任职多家知名大型企业,多次独立承担并成功上线关键大型项目。
展开
-
Hadoop集群动态扩容和缩容
本文通过实例讲解了Hadoop集群动态扩容缩容的过程,记录于此,供自己和各位同学日后参考及研究。原创 2022-06-13 16:17:10 · 1856 阅读 · 0 评论 -
Hadoop集群中某主机(Worker)不作为HDFS的存储(Datanode)
本文对hdfs datanode及yarn nodemanager上下线具体方法进行了详细说明,记录于此,供今后自己及同学参考研究。转载 2022-06-09 11:37:57 · 1324 阅读 · 0 评论 -
简述Apache Hadoop、CDH及HDP
一.概述当前,hadoop发行版众多,其中包括华为发行版(收费)、Intel发行版(收费)、Cloudera发行版(Cloudera’s Distribution Including Apache Hadoop,简称 CDH,免费),Hortonworks发行版(Hortonworks Data Platform,简称 HDP,免费)等,这些发行版都是基于Apache Hadoop衍生而来。之所以衍生出如此众多发行版本,主要还是因为Apache Hadoop的开源协议:任何人可以对其进行修改,并作为开源或原创 2020-08-07 10:46:04 · 1123 阅读 · 0 评论 -
CDH 6.0.1 安装详解及问题解决
本文源自:https://blog.csdn.net/u010003835/article/details/85007946参考文章 :官方文档https://www.cloudera.com/documentation/enterprise/6/6.0/topics/installation.htmlCDH常见问题及解决方法(待续)https://blog.csdn.net/qq_24699959/article/details/80310070CDH 6.0.1 集群...转载 2020-08-06 17:36:42 · 1306 阅读 · 0 评论 -
CDH 20个实战案例
本文源自:http://www.fblinux.com/?p=15601.CCA介绍Cloudera Certified Associate(CCA认证)是Cloudera面向初中级 Hadoop技术人员推出的认证考试。由于Cloudera的Hadoop发行版是目前 使用最广泛的版本,Cloudera的认证也因此被广泛承认。能够获得这类 证书对于技术人员求职、企业投标等都是有重要作用的。CCA认证又分为以下三个方向:CCA Spark and Hadoop Developer:学会使用Apa转载 2020-08-06 17:28:39 · 766 阅读 · 1 评论 -
CDH和CM介绍及搭建
本文源自:http://www.fblinux.com/?p=14921CDH和CM简介 1.1什么是CDH 1.2什么是CM 1.3CM架构 1.4心跳 1.5CM 功能 1.5.1配置管理 1.5.2进程管理 1.5.3软件包管理 1.5.4主机管理 1.5.5资源管理 1.5.6用户管理 1.5.7安全管理 1.5.8管理服务 2CM 5.14 搭建 2.1环境的规划 2.2主机环境准备 2.3安装和配置元数据转载 2020-08-06 17:22:19 · 1569 阅读 · 0 评论 -
hadoop生态--Kafka
本文源自:https://www.cnblogs.com/Jing-Wang/p/10953048.html分布式流处理平台,是一个分布式消息中间件系统。一、jms1、什么是jmsjava message service(java 消息服务):java程序需要异步发送消息的时候使用的服务。用于异构系统之间的通信。middleware,中间件,提供消息服务,部件之间的交互通过...转载 2020-04-28 11:48:20 · 486 阅读 · 0 评论 -
聊聊MySQL、HBase、ES的特点和区别
本文源自:https://www.jianshu.com/p/4e412f48e820互联网时代各种存储框架层出不穷,眼花缭乱,比如传统的关系型数据库:Oracle、MySQL;新兴的NoSQL:HBase、Cassandra、Redis;全文检索框架:ES、Solr等。如何为自己的业务选取合适的存储方案,相信大家都思考过这个问题,本文简单聊聊我对Mysql、HBase、ES的理解,希望能和大...转载 2020-04-28 10:53:59 · 562 阅读 · 0 评论 -
OLAP开源引擎
本文源自:https://cloud.tencent.com/developer/article/1506782OLAP开源引擎目前市面上主流的开源OLAP引擎包含不限于:Hive、Hawq、Presto、Kylin、Impala、Sparksql、Druid、Clickhouse、Greeplum等,可以说目前没有一个引擎能在数据量,灵活程度和性能上做到完美,用户需要根据自己的需求进行选...转载 2020-04-13 15:25:31 · 858 阅读 · 0 评论 -
HIVE和HBASE区别
本文源自:https://www.cnblogs.com/justinzhang/p/4273470.html1. 两者分别是什么?Apache Hive是一个构建在Hadoop基础设施之上的数据仓库。通过Hive可以使用HQL语言查询存放在HDFS上的数据。HQL是一种类SQL语言,这种语言最终被转化为Map/Reduce. 虽然Hive提供了SQL查询功能,但是Hive不能够进行...转载 2020-04-12 17:31:05 · 404 阅读 · 0 评论 -
Hadoop生态系统官网、下载地址、文档
本文源自:http://lxw1234.com/archives/2015/05/203.htmApache版本:Hadoop官网:http://hadoop.apache.org/Hadoop下载:http://mirror.bit.edu.cn/apache/hadoop/common/Hadoop历史版本下载:http://archive.apache.org/dist/...转载 2020-04-12 17:24:29 · 3243 阅读 · 0 评论 -
Hive中Sqoop的基本用法和常见问题
本文源自:https://blog.csdn.net/onlyoncelove/article/details/81191432一、通过Sqoop将Hive表数据导入到Mysql1、第一种是将hive上某张表的全部数据导入到mysql对应的表中。2、第二种是将hive上某张表中的部分数据导入到mysql对应的表中。两种方式的区别在于第二种情况需要指定要导入数据的列名称。两种情况的导...转载 2020-04-12 17:22:53 · 771 阅读 · 0 评论 -
读懂hadoop、hbase、hive、spark分布式系统架构
本文源自:https://blog.csdn.net/bbaiggey/article/details/53574479机器学习、数据挖掘等各种大数据处理都离不开各种开源分布式系统,hadoop用于分布式存储和map-reduce计算,spark用于分布式机器学习,hive是分布式数据库,hbase是分布式kv系统,看似互不相关的他们却都是基于相同的hdfs存储和yarn资源管理,本文通过全套...转载 2020-04-12 16:58:23 · 555 阅读 · 0 评论 -
hadoop+HBase+ZooKeeper+Hive完全分布式集群部署安装
本文源自:https://www.cnblogs.com/linxizhifeng/p/7207655.html1. 系统环境1.1. 软件版本下表为本系统环境所安装的软件的版本信息: 软件类别 版本 下载地址 Hadoop 官网 ...转载 2020-04-12 13:28:05 · 874 阅读 · 0 评论 -
使用Sqoop将HDFS/Hive/HBase与MySQL/Oracle中的数据相互导入、导出
本文源自:https://www.cnblogs.com/wzjhoutai/p/7080216.html使用Sqoop将MySQL中的数据导入到HDFS/Hive/HBase二、使用Sqoop将HDFS/Hive/HBase中的数据导出到MySQL2.3HBase中的数据导出到mysql眼下没有直接的命令将HBase中的数据导出到MySQL。但能够先将HBase中的数据导出到...转载 2020-04-12 16:26:22 · 390 阅读 · 0 评论 -
Hadoop+HBase+Spark+Hive环境搭建
本文源自:https://www.cnblogs.com/cheyunhua/p/10037162.html0. 准备安装包本文所需的系统镜像、大数据软件安装包、开发环境软件安装包等都可以在我的百度云盘中下载。链接:系统镜像和各种大数据软件密码:n2cn1. Windows下安装Ubuntu双系统Hadoop等大数据开源框架是不支持Windows系统的,所以需要先安装一个...转载 2020-04-12 16:35:25 · 1328 阅读 · 0 评论