黄子韬揭秘徐艺洋与EXO的不解之缘

黄子韬揭秘:徐艺洋与EXO的不解之缘

在娱乐圈的繁华与喧嚣中,总有一些不为人知的故事,它们或温馨、或励志,或是感叹命运的奇妙。近日,黄子韬在一档热门综艺节目中意外爆料,揭开了徐艺洋与EXO之间鲜为人知的秘密。

徐艺洋,这位青春洋溢、才华横溢的女孩,以其独特的魅力在娱乐圈崭露头角。 而在她的背后,有一个鲜为人知的故事。当姜潮问及徐艺洋以前喜欢EXO中的哪位成员时,黄子韬作为她的老板和好友,忍不住插话透露:“是鹿晗,没有鹿哥,艺洋可能就不会成为艺人,也去不了SM当练习生,更回不来我这里。”

这一爆料无疑为 观众揭开了一段尘封的记忆。徐艺洋在加入SM公司后,遇到了许多志同道合的练习生,其中不乏EXO的成员。而在这些前辈中,鹿晗对她的影响尤为深远。黄子韬表示,正是鹿晗的榜样力量和悉心指导,让徐艺洋在异国他乡的训练生活中找到了方向,也坚定了她追逐梦想的决心。

然而,这段缘分并非一帆风顺。徐艺洋回忆道,在刚进入SM公司时,她曾试图用韩语与黄子韬打招呼,但当时尚未回国的黄子韬并未理睬她。这一幕虽然略显尴尬,但也成为了两人日后回忆的趣事。如今,徐艺洋在黄子韬的带领下,逐渐在娱乐圈崭露头角,两人的关系也越发亲密。

03f221f98da7807767bb8dec6d665c02.jpeg


这段故事不仅展现了徐艺洋与EXO成员之间的深厚情谊,也彰显了黄子韬作为老板和朋友的深厚情谊。在娱乐圈这个竞争激烈的舞台上,他们相互扶持、共同成长,用汗水和努力书写着属于自己的传奇。

而徐艺洋的故事也告诉我们,成功并非一蹴而就。在追逐梦想的道路上,我们需要坚定信念、勇往直前。同时,我们也要珍惜身边那些给予我们帮助和支持的人,因为他们是我们前行路上坚实的后盾。

让我们共同期待徐艺洋在未来的日子里,能够继续发光发热,为我们带来更多精彩的作品和感人的故事!

内容概要:本文研究了一种基于离散韦格纳分布(DWVD)结合卷积神经网络(CNN)长短期记忆网络(LSTM)的故障诊断方法,利用DWVD对振动信号进行时频特征提取,并将其转化为二维图像输入到CNN-LSTM混合深度学习模型中,实现对机械系统尤其是轴承故障的高精度自动识别。文中详细阐述了信号处理流程、模型构建方式及训练策略,并采用CWRU轴承数据集进行实验验证,结果表明该方法在复杂工况下具有优异的诊断准确率和鲁棒性;同时提供了完整的Matlab代码实现,便于复现进一步研究。; 适合人群:具备一定信号处理机器学习基础,从事机械故障诊断、工业自动化或智能制造方向的研究生、科研人员及工程技术人员;熟悉Matlab编程者更佳。; 使用场景及目标:①应用于旋转机械设备的状态监测早期故障预警;②为深度学习在工业故障诊断中的落地提供可参考的技术路线实现方案;③支持学术研究中的模型对比、算法改进创新验证。; 阅读建议:建议结合提供的Matlab代码逐模块理解实现细节,重点关注DWVD时频图生成、数据预处理、CNN-LSTM网络结构设计参数调优过程,同时可尝试在其他公开数据集上迁移验证以加深理解。基于离散韦格纳分布(DWVD)结合卷积神经网络(CNN)长短期记忆网络(LSTM)的故障诊断研究(Matlab代码实现)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值