day09HDFS

本文详细介绍了HDFS的元数据管理,包括SecondaryNameNode的角色和namenode的恢复。还阐述了HDFS的Java API配置与使用,如创建文件系统、文件操作、目录管理等。此外,讨论了HDFS的权限控制、快照功能、数据备份与恢复,以及高可用机制的配置,包括NameNode和ResourceManager的HA集群设置。
摘要由CSDN通过智能技术生成

一.HDFS的元数据辅助管理(SecondaryNameNode)

  1. namenode的作用:管理元数据Fsimage文件(镜像,存储几乎所有的元数据,不会立刻更新) Edits文件(日志文件,存储最近一段时间元数据,数据格式不一样慢)
  2. SecondaryNameNode辅助管理元数据:隔段时间将fsimage和edits文件拷贝到所在主机,将两个文件合并,合并成新的fsimage.ckpt文件替换旧的fsimage,生成edits.new文件最后到edits。触发条件:每隔一小时,或edits文件大于64m。
  3. SecondaryNameNode在合并edits和fsimage时需要消耗的内存和那么node差不多,所以一般不把namenode和secondarynode放在一台机器上
  4. namenode元数据恢复:可以通过SecondaryNameNode恢复

二.HDFS的JavaApi

  1. 配置windows的hadoop
    1.1 第一步:将已经编译好的Windows版本Hadoop解压到到一个没有中文没有空格的路径下面
    1.2第二步:在windows上面配置hadoop的环境变量: HADOOP_HOME,并将%HADOOP_HOME%\bin添加到path中
    1.3第三步:把hadoop2.7.5文件夹中bin目录下的hadoop.dll文件放到系统盘: C:\Windows\System32 目录
    1.4第四步:关闭windows重启
  2. 导入maven依赖
<dependencies>
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-common</artifactId>
        <version>2.7.5</version>
    </dependency>
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-client</artifactId>
        <version>2.7.5</version>
    </dependency>
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-hdfs</artifactId>
        <version>2.7.5</version>
    </dependency>
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-mapreduce-client-core</artifactId>
        <version>2.7.5</version>
    </dependency>
    <dependency>
        <groupId>junit</groupId>
        <artifactId>junit</artifactId>
        <version>4.12</version>
    </dependency>
</dependencies>
  1. 使用文件系统方式访问数据
    3.1 涉及的主要类:configuration:封装了客户端或服务器的配置,filesystem是一个文件系统对象,可以用该对象的一些方法对文件进行操作(get方法)
package com.hlzq.hdfs;


import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.junit.Test;

import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;

public class TestDemo1 {
    @Test
    public void meth01GetFileSystem() throws IOException {
        //1.创建configuration对象
        Configuration configuration = new Configuration();
        //2.指定创建文件系统类型
        configuration.set("fs.defaultFS", "hdfs://node1:8020");
        //3.获取指定的文件系统
        FileSystem fileSystem = FileSystem.get(configuration);
        System.out.println(fileSystem);
    }
    @Test
    public void meth02GetFileSystem() throws IOException, URISyntaxException {
        //1.创建configuration对象
        //2.指定创建文件系统类型
        //3.获取指定的文件系统
        FileSystem jdjsdj = FileSystem.get(new URI( "hdfs://node1:8020"), new Configuration());
        System.out.println(jdjsdj);
    }

}

//遍历hdfs文件

@Test
public  void bianLi() throws URISyntaxException, IOException {
    //获取filesystem对象
    FileSystem fileSystem = FileSystem.get(new URI("hdfs://node1:8020"), new Configuration());
    // 获取指定目录下的缩影文件的详情
    RemoteIterator<LocatedFileStatus> locatedFileStatusRemoteIterator = fileSystem.listFiles(new Path("/"), true);
    //遍历迭代器集合,分别获取文件的信息
    while (locatedFileStatusRemoteIterator.hasNext()){
        LocatedFileStatus next = locatedFileStatusRemoteIterator.next();
        //获取具体的文件信息
        Path path = next.getPath();
        System.out.println(path);
        //获取每一个文件的block信息
        BlockLocation[] blockLocations = next.getBlockLocations();
        System.out.println(blockLocations.length);//block的数量(文件被切分成几份)

        for (BlockLocation blockLocation : blockLocations) {
            String[] hosts = blockLocation.getHosts();
            for(String host: hosts){
                System.out.println(host);
            }
            System.out.println("#########################################################");
        }

    }

    //关闭filesystem对象
    fileSystem.close();
}

创建文件夹:

@Test
    public  void mkdir() throws URISyntaxException, IOException {
        FileSystem fileSystem = FileSystem.get(new URI("hdfs://node1:8020"), new Configuration());
        boolean exists = fileSystem.exists(new Path("/xx/yy/zz"));//exists判断文件夹是否存在
        if (!exists){
            System.out.println("不存在创建");
         fileSystem.mkdirs(new Path("/xx/yy/zz"));
        }else System.out.println("存在,不创建");


    }

下载

  //下载方法一
    @Test
    public void dowlo() throws URISyntaxException, IOException {
        FileSystem fileSystem = FileSystem.get(new URI("hdfs://node1:8020"), new Configuration());
        //获取源文件输入流
        FSDataInputStream inputStream = fileSystem.open(new Path("/anaconda-ks.cfg"));
        //获取本地文件的输出流
        FileOutputStream outputStream = new FileOutputStream("F:\\dnxx");
       //使用IOUtils工具实现文件的拷贝
        IOUtils.copy(inputStream, outputStream);
        //关流
        outputStream.close();
        inputStream.close();
    }
    //下载方法二,
    @Test
    public void dowlo2() throws URISyntaxException, IOException {
        FileSystem fileSystem = FileSystem.get(new URI("hdfs://node1:8020"), new Configuration());
        fileSystem.copyToLocalFile(new Path("/anaconda-ks.cfg"),new Path("F:\\dnxx"));
        fileSystem.close();
    }                           

上传

 //文件上传
    @Test
    public void Sha() throws URISyntaxException, IOException {
        FileSystem fileSystem = FileSystem.get(new URI("hdfs://node1:8020"), new Configuration());
        fileSystem.copyFromLocalFile(new Path("F:\\dnxx"),new Path("/xx/yy/zz"));
        fileSystem.close();
    }

小文件合并(本地小文件,追加)

@Test
    public void Shaheb() throws URISyntaxException, IOException {
        FileSystem fileSystem = FileSystem.get(new URI("hdfs://node1:8020"), new Configuration());
    //创建HDFS上的文件名
        FSDataOutputStream outputStream = fileSystem.create(new Path("/a.txt"));
        //获取本地文件系统
        LocalFileSystem local = FileSystem.getLocal(new Configuration());
        //通过本地文件系统获取文件列表为一个集合
        FileStatus[] fileStatuses = local.listStatus(new Path("file:///G:\\dd"));
        for (FileStatus fileStatus:fileStatuses){
            FSDataInputStream open = local.open(fileStatus.getPath());
            IOUtils.copy(open, outputStream);
            IOUtils.closeQuietly(open);
        }
        IOUtils.closeQuietly(outputStream);
        local.close();
        fileSystem.close();
    }

三.HDFS的访问权限控制

  1. 权限总开关:vim hdfs-site.xml在这里插入图片描述
    打开为TRUE ,分发,重启hdfs
  2. 伪装用户:在这里插入图片描述

四.HDFS其他功能

1.不同集群之间数据复制:
1.1集群内部文件拷贝scp:scp (-r目录)文件名 主机名:$pwd
1.2远程复制到本地:scp root@主机名:文件地址名字 存放位置
scp -r root@node2:zookeeper.out dir33/
1.3跨集群之间的数据拷贝:hadoop distcp hdfs://node1:8020/jdk-8u hdsfs://cluste2:8020/
1.4Archive档案的使用:hdfs不擅长存储小文件,每个文件最少一个block,每个block都会在namenode占用内存,存在大量的小文件,就会吃掉namenode的大量内存。Archive把多个文件归档称为一个文件,归档成为一个文件后还可以透明的访问每一个文件。
1.4.1:创建Archive
在这里插入图片描述
例:你想存档一个目录/config下的所有文件:
hadoop archive -archiveName 名字 -p /config (打包的目录)/存放的目录
在这里插入图片描述
1.4.2查看Archive:hadoop fs -cat /output/test.har/part-0
1.4.3查看小文件列表: hadoop fs -ls har://hdfs-node1:8020/output/test.har
在这里插入图片描述
1.4.4访问单独的小文件: hadoop fs -cat har://hdfs-node1:8020/output/test.har/core-site.xml
在这里插入图片描述
1.4.5archive不支持打包
1.4.6解压Achive: hadoop fs -cp har:///output/test.har/* /config2在这里插入图片描述

五.HDFS的快照

  1. 数据备份,误操作容灾恢复

  2. 开启指定目录的快照功能:hdfs dfsadmin -allowSnapshot 路径

  3. 禁用指定路径的快照功能:hdfs dfsadmin -disallowSnapshot 路径

  4. 给指定路径创建快照:hdfs dfs -createSnapshot 路径
    在这里插入图片描述

  5. 指定快照名称进行创建快照:hdfs dfs -createSnapshot 路径 名称

  6. 快照重命名:hdfs dfs -renameSnapshot 路径 旧名称 新名称

  7. 列出当前用户所有可快照目录:hdfs lsSnapshottableDir

  8. 恢复快照:hdfs dfs -cp -ptopax 快照位置 /恢复位置

  9. 删除快照:hdfs dfs -deleteSnapshort /快照目录的 快照名

六.HDFS的Trash回收站功能

  1. 在/user/用户名/.Trash目录
  2. 参数
    在这里插入图片描述
  3. 强删除:hadoop fs -rm -skipTrash /dir1/a.txt

七.HDFS高可用机制

  1. 在这里插入图片描述
    2.HDFS高可用集群
    在这里插入图片描述
    在这里插入图片描述
    2.1修改core-site.xml
    在这里插入图片描述
<configuration>
<!-- 指定NameNode的HA高可用的zk地址  -->
         <property>
                   <name>ha.zookeeper.quorum</name>
                   <value>node1:2181,node2:2181,node3:2181</value>
         </property>
 <!-- 指定HDFS访问的域名地址  -->
         <property>
                   <name>fs.defaultFS</name>
                   <value>hdfs://ns</value>
         </property>
 <!-- 临时文件存储目录  -->
        <property>
                  <name>hadoop.tmp.dir</name>
                  <value>/opt/server/hadoop-2.7.5/data/tmp</value>
        </property>
         <!-- 开启hdfs垃圾箱机制,指定垃圾箱中的文件七天之后就彻底删掉
                                单位为分钟
         -->
        <property>
                 <name>fs.trash.interval</name>
                 <value>10080</value>
        </property>

</configuration>

2.2. 修改hdfs-site.xml

<!--  指定命名空间  -->
	<property>
		<name>dfs.nameservices</name>
		<value>ns</value>
	</property>
<!--  指定该命名空间下的两个机器作为我们的NameNode  -->
	<property>
		<name>dfs.ha.namenodes.ns</name>
		<value>nn1,nn2</value>
	</property>

	<!-- 配置第一台服务器的namenode通信地址  -->
	<property>
		<name>dfs.namenode.rpc-address.ns.nn1</name>
		<value>node1:8020</value>
	</property>
	<!--  配置第二台服务器的namenode通信地址  -->
	<property>
		<name>dfs.namenode.rpc-address.ns.nn2</name>
		<value>node2:8020</value>
	</property>
	<!-- 所有从节点之间相互通信端口地址 -->
	<property>
		<name>dfs.namenode.servicerpc-address.ns.nn1</name>
		<value>node1:8022</value>
	</property>
	<!-- 所有从节点之间相互通信端口地址 -->
	<property>
		<name>dfs.namenode.servicerpc-address.ns.nn2</name>
		<value>node2:8022</value>
	</property>
	
	<!-- 第一台服务器namenode的web访问地址  -->
	<property>
		<name>dfs.namenode.http-address.ns.nn1</name>
		<value>node1:50070</value>
	</property>
	<!-- 第二台服务器namenode的web访问地址  -->
	<property>
		<name>dfs.namenode.http-address.ns.nn2</name>
		<value>node2:50070</value>
	</property>
	
	<!-- journalNode的访问地址,注意这个地址一定要配置 -->
	<property>
		<name>dfs.namenode.shared.edits.dir</name>
		<value>qjournal://node1:8485;node2:8485;node3:8485/ns1</value>
	</property>
	<!--  指定故障自动恢复使用的哪个java类 -->
	<property>
		<name>dfs.client.failover.proxy.provider.ns</name>
		<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
	</property>
	
	<!-- 故障转移使用的哪种通信机制 -->
	<property>
		<name>dfs.ha.fencing.methods</name>
		<value>sshfence</value>
	</property>
	
	<!-- 指定通信使用的公钥  -->
	<property>
		<name>dfs.ha.fencing.ssh.private-key-files</name>
		<value>/root/.ssh/id_rsa</value>
	</property>
	<!-- journalNode数据存放地址  -->
	<property>
		<name>dfs.journalnode.edits.dir</name>
		<value>/opt/server/hadoop-2.7.5/data/dfs/jn</value>
	</property>
	<!-- 启用自动故障恢复功能 -->
	<property>
		<name>dfs.ha.automatic-failover.enabled</name>
		<value>true</value>
	</property>
	<!-- namenode产生的文件存放路径 -->
	<property>
		<name>dfs.namenode.name.dir</name>
		<value>file:///opt/server/hadoop-2.7.5/data/dfs/nn/name</value>
	</property>
	<!-- edits产生的文件存放路径 -->
	<property>
		<name>dfs.namenode.edits.dir</name>
		<value>file:///opt/server/hadoop-2.7.5/data/dfs/nn/edits</value>
	</property>
	<!-- dataNode文件存放路径 -->
	<property>
		<name>dfs.datanode.data.dir</name>
		<value>file:///opt/server/hadoop-2.7.5/data/dfs/dn</value>
	</property>
	<!-- 关闭hdfs的文件权限 -->
	<property>
		<name>dfs.permissions</name>
		<value>false</value>
	</property>
	<!-- 指定block文件块的大小 -->
	<property>
		<name>dfs.blocksize</name>
		<value>134217728</value>
	</property>

2.3 修改yarn-site.xml,注意node03与node02配置不同

<!-- Site specific YARN configuration properties -->
<!-- 是否启用日志聚合.应用程序完成后,日志汇总收集每个容器的日志,这些日志移动到文件系统,例如HDFS. -->
<!-- 用户可以通过配置"yarn.nodemanager.remote-app-log-dir""yarn.nodemanager.remote-app-log-dir-suffix"来确定日志移动到的位置 -->
<!-- 用户可以通过应用程序时间服务器访问日志 -->

<!-- 启用日志聚合功能,应用程序完成后,收集各个节点的日志到一起便于查看 -->
	<property>
			<name>yarn.log-aggregation-enable</name>
			<value>true</value>
	</property>
 

<!--开启resource manager HA,默认为false--> 
<property>
        <name>yarn.resourcemanager.ha.enabled</name>
        <value>true</value>
</property>
<!-- 集群的Id,使用该值确保RM不会做为其它集群的active -->
<property>
        <name>yarn.resourcemanager.cluster-id</name>
        <value>mycluster</value>
</property>
<!--配置resource manager  命名-->
<property>
        <name>yarn.resourcemanager.ha.rm-ids</name>
        <value>rm1,rm2</value>
</property>
<!-- 配置第一台机器的resourceManager -->
<property>
        <name>yarn.resourcemanager.hostname.rm1</name>
        <value>node2</value>
</property>
<!-- 配置第二台机器的resourceManager -->
<property>
        <name>yarn.resourcemanager.hostname.rm2</name>
        <value>node3</value>
</property>

<!-- 配置第一台机器的resourceManager通信地址 -->
<property>
        <name>yarn.resourcemanager.address.rm1</name>
        <value>node2:8032</value>
</property>
<property>
        <name>yarn.resourcemanager.scheduler.address.rm1</name>
        <value>node2:8030</value>
</property>
<property>
        <name>yarn.resourcemanager.resource-tracker.address.rm1</name>
        <value>node2:8031</value>
</property>
<property>
        <name>yarn.resourcemanager.admin.address.rm1</name>
        <value>node2:8033</value>
</property>
<property>
        <name>yarn.resourcemanager.webapp.address.rm1</name>
        <value>node2:8088</value>
</property>

<!-- 配置第二台机器的resourceManager通信地址 -->
<property>
        <name>yarn.resourcemanager.address.rm2</name>
        <value>node3:8032</value>
</property>
<property>
        <name>yarn.resourcemanager.scheduler.address.rm2</name>
        <value>node3:8030</value>
</property>
<property>
        <name>yarn.resourcemanager.resource-tracker.address.rm2</name>
        <value>node3:8031</value>
</property>
<property>
        <name>yarn.resourcemanager.admin.address.rm2</name>
        <value>node3:8033</value>
</property>
<property>
        <name>yarn.resourcemanager.webapp.address.rm2</name>
        <value>node3:8088</value>
</property>


<!--开启resourcemanager自动恢复功能-->
<property>
        <name>yarn.resourcemanager.recovery.enabled</name>
        <value>true</value>
</property>
<!--在node2上配置rm1,在node3上配置rm2,注意:一般都喜欢把配置好的文件远程复制到其它机器上,但这个在YARN的另一个机器上一定要修改,其他机器上不配置此项-->
	<property>       
		<name>yarn.resourcemanager.ha.id</name>
		<value>rm1</value>
       <description>If we want to launch more than one RM in single node, we need this configuration</description>
	</property>
	   
	   <!--用于持久存储的类。尝试开启-->
<property>
        <name>yarn.resourcemanager.store.class</name>
        <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
</property>
<property>
        <name>yarn.resourcemanager.zk-address</name>
        <value>node2:2181,node3:2181,node1:2181</value>
        <description>For multiple zk services, separate them with comma</description>
</property>
<!--开启resourcemanager故障自动切换,指定机器--> 
<property>
        <name>yarn.resourcemanager.ha.automatic-failover.enabled</name>
        <value>true</value>
        <description>Enable automatic failover; By default, it is enabled only when HA is enabled.</description>
</property>
<property>
        <name>yarn.client.failover-proxy-provider</name>
        <value>org.apache.hadoop.yarn.client.ConfiguredRMFailoverProxyProvider</value>
</property>
<!-- 允许分配给一个任务最大的CPU核数,默认是8 -->
<property>
        <name>yarn.nodemanager.resource.cpu-vcores</name>
        <value>2</value>
</property>
<!-- 每个节点可用内存,单位MB -->
<property>
        <name>yarn.nodemanager.resource.memory-mb</name>
        <value>2048</value>
</property>
<!-- 单个任务可申请最少内存,默认1024MB -->
<property>
        <name>yarn.scheduler.minimum-allocation-mb</name>
        <value>1024</value>
</property>
<!-- 单个任务可申请最大内存,默认8192MB -->
<property>
        <name>yarn.scheduler.maximum-allocation-mb</name>
        <value>2048</value>
</property>
<!--多长时间聚合删除一次日志 此处-->
<property>
        <name>yarn.log-aggregation.retain-seconds</name>
        <value>2592000</value><!--30 day-->
</property>
<!--时间在几秒钟内保留用户日志。只适用于如果日志聚合是禁用的-->
<property>
        <name>yarn.nodemanager.log.retain-seconds</name>
        <value>604800</value><!--7 day-->
</property>
<!--指定文件压缩类型用于压缩汇总日志-->
<property>
        <name>yarn.nodemanager.log-aggregation.compression-type</name>
        <value>gz</value>
</property>
<!-- nodemanager本地文件存储目录-->
<property>
        <name>yarn.nodemanager.local-dirs</name>
        <value>/opt/server/hadoop-2.7.5/yarn/local</value>
</property>
<!-- resourceManager  保存最大的任务完成个数 -->
<property>
        <name>yarn.resourcemanager.max-completed-applications</name>
        <value>1000</value>
</property>
<!-- 逗号隔开的服务列表,列表名称应该只包含a-zA-Z0-9_,不能以数字开始-->
<property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
</property>

<!--rm失联后重新链接的时间--> 
<property>
        <name>yarn.resourcemanager.connect.retry-interval.ms</name>
        <value>2000</value>
</property>

2.4修改mapred-site.xml先拷贝mapred-site.xml.template

<!--指定运行mapreduce的环境是yarn -->
<property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
</property>
<!-- MapReduce JobHistory Server IPC host:port -->
<property>
        <name>mapreduce.jobhistory.address</name>
        <value>node3:10020</value>
</property>
<!-- MapReduce JobHistory Server Web UI host:port -->
<property>
        <name>mapreduce.jobhistory.webapp.address</name>
        <value>node3:19888</value>
</property>
<!-- The directory where MapReduce stores control files.默认 ${hadoop.tmp.dir}/mapred/system -->
<property>
        <name>mapreduce.jobtracker.system.dir</name>
        <value>/opt/server/hadoop-2.7.5/data/system/jobtracker</value>
</property>
<!-- The amount of memory to request from the scheduler for each map task. 默认 1024-->
<property>
        <name>mapreduce.map.memory.mb</name>
        <value>1024</value>
</property>
<!-- <property>
                <name>mapreduce.map.java.opts</name>
                <value>-Xmx1024m</value>
        </property> -->
<!-- The amount of memory to request from the scheduler for each reduce task. 默认 1024-->
<property>
        <name>mapreduce.reduce.memory.mb</name>
        <value>1024</value>
</property>
<!-- <property>
               <name>mapreduce.reduce.java.opts</name>
               <value>-Xmx2048m</value>
        </property> -->
<!-- 用于存储文件的缓存内存的总数量,以兆字节为单位。默认情况下,分配给每个合并流1MB,给个合并流应该寻求最小化。默认值100-->
<property>
        <name>mapreduce.task.io.sort.mb</name>
        <value>100</value>
</property>
 
<!-- <property>
        <name>mapreduce.jobtracker.handler.count</name>
        <value>25</value>
        </property>-->
<!-- 整理文件时用于合并的流的数量。这决定了打开的文件句柄的数量。默认值10-->
<property>
        <name>mapreduce.task.io.sort.factor</name>
        <value>10</value>
</property>
<!-- 默认的并行传输量由reduce在copy(shuffle)阶段。默认值5-->
<property>
        <name>mapreduce.reduce.shuffle.parallelcopies</name>
        <value>15</value>
</property>
<property>
        <name>yarn.app.mapreduce.am.command-opts</name>
        <value>-Xmx1024m</value>
</property>
<!-- MR AppMaster所需的内存总量。默认值1536-->
<property>
        <name>yarn.app.mapreduce.am.resource.mb</name>
        <value>1536</value>
</property>
<!-- MapReduce存储中间数据文件的本地目录。目录不存在则被忽略。默认值${hadoop.tmp.dir}/mapred/local-->
<property>
        <name>mapreduce.cluster.local.dir</name>
        <value>/opt/server/hadoop-2.7.5/data/system/local</value>
</property>

2.5修改slaves

node1
node2
node3

2.6修改hadoop-env.sh

export JAVA_HOME=/export/server/jdk1.8.0_241

2.7启动分发
cd /opt/server
scp -r hadoop-2.7.5/ node2:$ PWD
scp -r hadoop-2.7.5/ node3:$PWD
2.8三台机器执行一下命令:

mkdir -p /opt/server/hadoop-2.7.5/data/dfs/nn/name
mkdir -p /opt/server/hadoop-2.7.5/data/dfs/nn/edits
mkdir -p /opt/server/hadoop-2.7.5/data/dfs/nn/name
mkdir -p /opt/server/hadoop-2.7.5/data/dfs/nn/edits

2.9更改node3的rm2

vim yarn-site.xml

在这里插入图片描述
2.10启动
node1上执行

cd   /opt/server/hadoop-2.7.5
bin/hdfs zkfc -formatZK
sbin/hadoop-daemons.sh start journalnode
bin/hdfs namenode -format
bin/hdfs namenode -initializeSharedEdits -force
sbin/start-dfs.sh

node2上执行

cd   /opt/server/hadoop-2.7.5
bin/hdfs namenode -bootstrapStandby
sbin/hadoop-daemon.sh start namenode
sbin/start-yarn.sh
bin/yarn rmadmin -getServiceState rm1(查看resourceManager状态)

node3上面执行

cd   /export/servers/hadoop-2.7.5
sbin/start-yarn.sh
bin/yarn rmadmin -getServiceState rm2
sbin/mr-jobhistory-daemon.sh start historyserver
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值