数论之————欧拉函数

本文介绍了欧拉定理,并详细讲解了欧拉函数的概念,它表示的是1到n-1中与n互质的数的个数。通过分解质因数的方法给出了欧拉函数的计算公式,并提供了求解一个数的欧拉函数值的代码模板。
摘要由CSDN通过智能技术生成
再讲欧拉函数之前,先讲一下欧拉定理。

欧拉定理,也称费马-欧拉定理
若n,a为正整数,且n,a互质,即gcd(a,n) = 1,则
a^φ(n) ≡ 1 (mod n)。
————————————————————————————————————————————————————
这里的φ(n)就是欧拉函数。表达的意思是1到n-1内与n互质的数的个数。
正整数n的唯一分解式n=p1^a1*p2^a2…..p1,p2都是n的质因子。要求1,2,3…n与n互素的数的个数,分别减去是p1,p2…pk,的倍数的个数。
得到:n-n/p1-n/p2…-n/pk。
欧拉函数公式:
这里写图片描述
然后同时加上是两个素因子的倍数的个数,这就是容斥原理。(因为重复减了)n/p1*p2+n/p1*p3…
对于是加号还是减号取决于素因子个数,奇减偶加。
比如:是两个素因子的倍数的数是加,是三个素因子的倍数的数是减
再简化一下
φ(n)=n(1-1/p1)*(1-1/p2)…(1-1/pk);

只求一个数的欧拉函数代码模板:
int</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值