pandas
文章平均质量分 75
一位代码
这个作者很懒,什么都没留下…
展开
-
pandas—删除某行或某列数据
首先,创建一个DataFrame格式数据作为举例数据。# 创建一个DataFrame格式数据data = {'a': ['a0', 'a1', 'a2'], 'b': ['b0', 'b1', 'b2'], 'c': [i for i in range(3)], 'd': 4}df = pd.DataFrame(data)print('举例数据情况:\n', df)注:DataFrame是最常用的pandas对象,使用pandas读取数据文件后,原创 2022-05-15 17:42:54 · 45816 阅读 · 2 评论 -
pandas—添加新列的常见方法
pandas为DataFrame格式数据添加新列的方法非常简单,只需要新建一个列索引,再为其赋值即可。以下总结了5种常见添加新列的方法。首先,创建一个DataFrame结构数据,作为数据举例。import pandas as pd# 创建一个DataFrame结构数据data = {'a': ['a0', 'a1', 'a2'], 'b': ['b0', 'b1', 'b2']}df = pd.DataFrame(data)print('举例数据情况:\n', df)添加原创 2022-05-04 21:38:00 · 89462 阅读 · 4 评论 -
pandas—数据选择的常见用法
使用pandas时,经常会对某行、某列、满足条件的数据进行统计计算。以下总结了pandas数据选择的常见方法,包括loc、iloc等方法的使用。首先读取数据:df = pd.read_excel('zpxx.xlsx')1、元素、索引、列名获取可以利用DataFrame的基础属性values、index、columns,分别获取元素、索引、列名print('获取元素:\n', df.values) # 返回二维列表print('获取索引:\n', df.index) # 返回行的索引原创 2022-04-24 20:56:10 · 3306 阅读 · 0 评论