HTML——边用边学

1.HTML的<!doctype>标签,

<!doctype>声明必须是文档的第一行,位于<html>之前

<!doctype>声明不是<html>标签,它是指示web浏览器关于页面使用哪个HTML版本进行编写的指令。

在HTML4.01中,<!doctype>声明引用DTD,因为HTML4.01是基于SGML。DTD规定了标记语言的规则,这样浏览器才能正确的呈现内容。

HTML5不是基于SGML,所以不需要引用DTD.

2.HTML4.01与HTML5之间的差别

在HTML4.01中有三种<!doctype>声明,在HTML5中只有一种

<!doctype html>

3.提示

<!doctype>声明没有结束标签

<!doctype>声明对大小写不敏感

4.常用的DOCTYPE声明

(1)HTML5

<!DOCTYPE html>

(2)HTML4.01 Strict

该DTD包含所有HTML元素和属性,但不包括展示性和弃用的元素(如font)。不允许框架集(Framesets)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">

(3)HTML4.01 Transitional

该DTD包含所有HTML元素和属性,包括展示性和弃用的元素(如font)。不允许框架集(Framesets)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

(4)HTML4.01 Frameset

该DTD等同于HTML4.01 Transitional, 但允许框架集内容。

<DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN" "http://www.w3.org/TR/html4/frameset.dtd">

(5)XHTML1.0 Strict

该DTD包含所有HTML元素和属性,但不包括展示性和弃用的元素(如font)。不允许框架集(Framesets)。必须以格式正确的XML来编写标记。

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

(6)XHTML1.0 Transitional

该DTD 包含所有HTML元素和属性,包括展示性和弃用的元素(如font()。不允许框架集(Framesets)。必须以格式正确的XML来编写标记。

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional //EN" "http://www.w3.org/TR/xhtml/DTD/xhtml-transitional.dtd">

(7)XHTML1.0 Frameset

该DTD等同于XHTML1.0 Transitional,但允许框架集。

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN" "http://www.w3.org/TR/xhtml/DTD/xhtml-frameset.dtd">

(8)XHTML1.1

该DTD等同于XHTML1.0 Strict, 但允许添加模型(如提供对东亚语系Ruby的支持)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml/DTD/xhtml.dtd">



深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值