一、首先我们通过一个问题来理清这两个概念
我有100个样本点,一个自变量是NDVI,回归量是AGB,我做了一个线性模型,得到了一列预测值AGBP,我想知道这个模型的p值,和AGB与AGBP这两列数据的p值是一个东西吗?
二、答案
不是!
回归模型的p值(通常称为回归系数的显著性检验)用于评估回归模型的拟合程度,即自变量与因变量之间的关系是否显著。在假设检验中,p值是用来衡量观察到的样本结果在统计学上是否支持原假设(假设回归系数为零)的程度。如果回归模型的p值小于显著性水平(通常设定为0.05),那么我们可以拒绝原假设,即认为自变量与因变量之间存在显著的线性关系。
而AGB与AGBP这两列数据的p值通常是用来评估两个变量之间的相关性的显著性。在这种情况下,你可以进行相关性分析(如Pearson相关系数),然后计算得到AGB与AGBP之间的p值。该p值用于判断AGB与AGBP之间的相关性是否显著,如果p值小于显著性水平(通常设定为0.05),则认为这两个变量之间存在显著的线性相关性。
因此,回归模型的p值和AGB与AGBP之间的p值是两个不同的统计量,用于评估不同的假设。
三、计算方法
真实值和预测值p值在这里就不讲了,SPASS、Python都提供了很便利的方法
这里只提供一个matlab的模型p值计算方法:
model = fitlm(x, y);
pValues = model.Coefficients.pValue;
disp(pValues);
x为自变量,y为因变量
我自己也实验过,有的数据这两个p值是相同的,而有的数据则大相径庭,建议使用一个计算标准,弄清楚自己需要的到底是哪个p值,不然真的很容易出错~