到底有什么不同:模型p值 vs. 真实值和预测值p值

一、首先我们通过一个问题来理清这两个概念

我有100个样本点,一个自变量是NDVI,回归量是AGB,我做了一个线性模型,得到了一列预测值AGBP,我想知道这个模型的p值,和AGB与AGBP这两列数据的p值是一个东西吗?

二、答案

不是!

回归模型的p值(通常称为回归系数的显著性检验)用于评估回归模型的拟合程度,即自变量与因变量之间的关系是否显著。在假设检验中,p值是用来衡量观察到的样本结果在统计学上是否支持原假设(假设回归系数为零)的程度。如果回归模型的p值小于显著性水平(通常设定为0.05),那么我们可以拒绝原假设,即认为自变量与因变量之间存在显著的线性关系。

而AGB与AGBP这两列数据的p值通常是用来评估两个变量之间的相关性的显著性。在这种情况下,你可以进行相关性分析(如Pearson相关系数),然后计算得到AGB与AGBP之间的p值。该p值用于判断AGB与AGBP之间的相关性是否显著,如果p值小于显著性水平(通常设定为0.05),则认为这两个变量之间存在显著的线性相关性。

因此,回归模型的p值和AGB与AGBP之间的p值是两个不同的统计量,用于评估不同的假设。

三、计算方法

真实值和预测值p值在这里就不讲了,SPASS、Python都提供了很便利的方法

这里只提供一个matlab的模型p值计算方法

model = fitlm(x, y);
pValues = model.Coefficients.pValue;
disp(pValues);

x为自变量,y为因变量

我自己也实验过,有的数据这两个p值是相同的,而有的数据则大相径庭,建议使用一个计算标准,弄清楚自己需要的到底是哪个p值,不然真的很容易出错~

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LHQ132

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值