转载请注明出处:http://blog.csdn.net/lhq_er/article/details/73604681
题目来源:学军中学NOIP2013提高组原创模拟题day2
https://wenku.baidu.com/view/3d053c4c76eeaeaad0f3309d.html###
Solution
T1 完全平方数 关键字:欧拉筛,快速幂,贪心
这道题目有两个区分点: 1.筛选素数的方法 2.计算结果的方法
1.处理方法显然就是欧拉筛(线性筛)了,注意要筛选到n/2,到sqrt(n)是不够的。
2.我们对任意一个数的阶乘进行质因数分解,例如:
15!=
211
36
53
72
111
131
那么对于这些质因子我们能够取到的理论上的最大的完全平方数是
210
36
52
72
110
130
即偶次幂完全取完,奇次幂减去1。事实上这事完全能够做到的,因为我们只要不取那个质数就能做到次数减一。
Tip:1.在求完质数后求n!中有几个质数p时可以用数学方法快速计算:
num=(n/p)+(n/
p2
)+(n/
p3
)+…… 这里的“/”都是下取整的
2.计算时要用到快速幂
3.一般的筛选法写得巧妙一点也可以过,如下:
//一般筛选法;
int main()
{
scanf("%lld",&n);
memset(vis,false,sizeof(vis)); vis[1]=true;
for (ll i=2;i<=n;i++)
{
if (!vis[i])
{
prime[++tot]=i;
for (ll j=i*i;j<=n;j+=i) vis[j]=true;
}
}
T2 卡片游戏 关键字:数学大力推一发,逆序对
上标解。
T3 围栏问题 关键字:搜索+剪枝,Dancing Links
这道题ZJOI2017讲课时提到过,可惜没有记住怎么做,当然记住了也没用,因为当时讲的是Dancing Links,其实对种种小数据可以搜索+剪枝水过
这道题目的关键是我们要推出下面这个性质:所有的围栏都是互不相交的矩形
————————————————————证明————————————————————
首先,两个围栏互相包含的情况不可能在最优解中出现(把里面那个拆掉可以节省篱笆,得到一个更优解)。
其次,两个围栏相交的情况也一定不是最优,如下图所示,把重叠的部分拆掉可以得到更优解。
由于我们的目标是最小化周长,可以得到这样一条重要性质:矩形的围栏比不规则形状的更优。如图,把里面的边往外平移,成为一个矩形的边框,这样可以在周长不变的情况下,围住更多的土地。(不用担心扩展出去的部分会和另外的围栏相交,因为这不可能在最优解中出现,刚才已经提到)
有些情况下,矩形边框不仅扩大围住的范围而且能节省周长。
所以,接下来我们只需考虑用矩形去包围兔子就够了。
定义基本矩形或叫极小矩形——假如这个矩形再往里缩小一点就会有兔子从里面逃出。
如就不是一个极小矩形,它可以往里收缩
现在它是一个极小矩形。
容易发现,最优解中必然只包含极小矩形。
——————————————————证毕————————————————————
解法一:
搜索+剪枝,枚举每一个兔子所在的栅栏,如果还可以再多一种栅栏就可以多一种选择:即开一个刚刚包围自己的栅栏。另一种选择就是和之前的某一个集合的兔子合并放到一个栅栏里,计算周长时找到上下左右的最大差值,记得+1。
解法二:
我们可以预处理出所有极小矩形:枚举所有兔子的非空子集,找出这个子集中最上、最左、最右、最下的兔子,就可得到一个极小矩形。(当然这样计算会出现许多重复的,剔除即可)。这种做法虽然是指数级的但是编码简单,而且n很小,仍可接受。
现在我们有了一堆矩形,对于每个矩形我们掌握它的两个属性:周长、围住了的兔子集合。问题转化为:从这堆矩形中选出不超过k个,在满足这些兔子集合互不相交,且其并集恰好是兔子全集的条件下,最小化总周长。
这是一个典型的精确覆盖问题,搜索解决即可。可以使用二进制来表示各个集合,用位运算的方法达到优化的效果。也可以用DLX来做,更快,更爽。 (我会告诉你我不会Dancing Links 吗,但不要慌,我会附上标程,可以借鉴一下)
总结:
这次考试T1没写出来欧拉筛,先优化版的一般筛法也没想到,只拿了70分,这提醒我要注意复习以前学过的知识,不要一直想着学新知识。T2也只拿了暴力分,数学推理都没敢去试一试,更没有想到是逆序对这种基础的知识,这也告诉了我们很多东西是伪装过的,不是你会逆序对就可以AC掉T2,还得有抽丝剥茧的能力。T3的dfs解法更是告诉了我们一样东西:暴力出奇迹。
CODE
T1
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define MOD 100000007
const ll MAXN=5000010,MAX_PRIME=350000;
ll n,ans=1,tot;
ll prime[MAX_PRIME];
bool vis[MAXN];
ll power(ll a,ll b,ll p)
{
ll ans=1;
while (b)
{
if (b&1) ans=(ans*a)%p;
a=(a*a)%p;
b>>=1;
}
return ans;
}
//欧拉筛;
int main()
{
scanf("%lld",&n);
memset(vis,false,sizeof(vis)); vis[1]=true;
for (ll i=2;i<=n;i++)
{
if (!vis[i]) prime[++tot]=i;
for (ll j=1;j<=tot && i*prime[j]<=n;j++)
{
vis[i*prime[j]]=true;
if (i%prime[j]==0) break;
}
}
for (ll i=1;i<=tot;i++)
{
ll t=n,a=prime[i],cnt=0;
while (t>0) t/=a,cnt+=t;
if (cnt>1)
if (cnt&1) ans=(ans*power(a,cnt-1,MOD))%MOD;
else ans=(ans*power(a,cnt,MOD))%MOD;
}
cout<<ans;
return 0;
}
T2
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const ll MAXN=500010;
ll tmp[MAXN],A[MAXN],B[MAXN],ans;
ll gcd(ll a,ll b)
{
if (b==0) return a;
else return gcd(b,a%b);
}
void Reverse_pair1(ll a[],ll b[],ll l,ll r)
{
if (l==r) return;
ll mid=(l+r)>>1;
Reverse_pair1(a,b,l,mid);
Reverse_pair1(a,b,mid+1,r);
ll i=l,j=mid+1,k=l;
while (i<=mid && j<=r)
if (a[i]<a[j])
b[k++]=a[i++];
else
b[k++]=a[j++],ans+=mid-i+1;
while (i<=mid) b[k++]=a[i++];
while (j<=r) b[k++]=a[j++];
for (ll i=l;i<=r;i++) a[i]=b[i];
}
void Reverse_pair2(ll a[],ll b[],ll l,ll r)
{
if (l==r) return;
ll mid=(l+r)>>1;
Reverse_pair2(a,b,l,mid);
Reverse_pair2(a,b,mid+1,r);
ll i=l,j=mid+1,k=l;
while (i<=mid && j<=r)
if (a[i]<=a[j])
b[k++]=a[i++];
else
b[k++]=a[j++],ans-=mid-i+1;
while (i<=mid) b[k++]=a[i++];
while (j<=r) b[k++]=a[j++];
for (ll i=l;i<=r;i++) a[i]=b[i];
}
int main()
{
ll n,l,r,x,sum=0;
scanf("%lld%lld%lld",&n,&l,&r);
for (ll i=1;i<=n;i++)
{
scanf("%lld",&x);
sum=sum+x;
A[i]=l*i-sum;
B[i]=r*i-sum;
}
Reverse_pair1(A,tmp,0,n);
Reverse_pair2(B,tmp,0,n);
ll tot=n*(n+1)/2;
ll d=gcd(tot,ans);
if (ans==tot) cout<<"1";
else cout<<ans/d<<"/"<<tot/d;
return 0;
}
T3
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int MAXN=16+1;
int x[MAXN],y[MAXN],lx[MAXN],rx[MAXN],ly[MAXN],ry[MAXN],ans,n,m,maxk;
void dfs(int t,int use,int tot)
{
if (tot>ans) return;
if (t>n)
{
ans=tot;
return;
}
if (use<maxk)
{
lx[use+1]=rx[use+1]=x[t];
ly[use+1]=ry[use+1]=y[t];
dfs(t+1,use+1,tot+4);
lx[use+1]=ly[use+1]=rx[use+1]=ry[use+1]=0;
}
for (int i=1;i<=use;i++)
{
int minx=lx[i],miny=ly[i],maxx=rx[i],maxy=ry[i];
int c=tot-2*((maxx-minx+1+maxy-miny+1));
lx[i]=min(lx[i],x[t]); rx[i]=max(rx[i],x[t]);
ly[i]=min(ly[i],y[t]); ry[i]=max(ry[i],y[t]);
c+=2*((rx[i]-lx[i]+1+ry[i]-ly[i]+1));
dfs(t+1,use,c);
lx[i]=minx; rx[i]=maxx; ly[i]=miny; ry[i]=maxy;
}
}
int main()
{
scanf("%d%d%d",&m,&maxk,&n);
for (int i=1;i<=n;i++)
scanf("%d%d",&x[i],&y[i]);
ans=1<<30;
dfs(1,0,0);
cout<<ans;
return 0;
}
T3 Dancing Links
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cstdlib>
using namespace std;
int m=0,n;
int l,kmax;
int X[25],Y[25],totX=0,totY=0;//离散化;
int x[25],y[25];
int L[500000],R[500000],U[500000],D[500000],C[500000];
int head;
int S[25]={0};
int W[500000];
int arr[500000]={0};
int ans=30000;
void remove(const int c) {
int i,j;
L[R[c]] = L[c];
R[L[c]] = R[c];
for (i = D[c]; i != c; i = D[i]) {
for (j = R[i]; j != i; j = R[j]) {
U[D[j]] = U[j];
D[U[j]] = D[j];
S[C[j]]--;
}
}
}
void resume(const int c) {
int i,j;
for (i = U[c]; i != c; i = U[i]) {
for (j = L[i]; j != i; j = L[j]) {
S[C[j]]++;
U[D[j]] = j;
D[U[j]] = j;
}
}
L[R[c]] = c;
R[L[c]] = c;
}
void dfs(int k,int sum) {
int i,j,t;
int s=30000, c;
if(sum>=ans)return;
if (R[head] == head) {
ans=sum;
return;
}
if(k>=kmax)return;
for (t = R[head]; t != head; t = R[t]) {
if (S[t] < s) {
s = S[t];
c = t;
}
}
remove(c);
for (i = D[c]; i != c; i = D[i]) {
for (j = R[i]; j != i; j = R[j])
remove(C[j]);
dfs(k + 1,sum+W[i/n]);
for (j = L[i]; j != i; j = L[j])
resume(C[j]);
}
resume(c);
return;
}
int main()
{
scanf("%d%d%d",&l,&kmax,&n);
for (int i=0;i<n;i++)
scanf("%d%d",&x[i],&y[i]);
for (int i=1;i<1<<n;i++){
int l=5000,r=0,u=5000,d=0;
for (int j=0;j<n;j++)
if(i&(1<<j)){
u=min(u,x[j]);
d=max(d,x[j]);
l=min(l,y[j]);
r=max(r,y[j]);
}
bool ok=true;
for (int j=0;j<n && ok;j++)
if(!(i&(1<<j)) && x[j]>=u && x[j]<=d && y[j]>=l && y[j]<=r)ok=false;
if(!ok)continue;
W[++m]=(d-u+r-l+2)*2;
for (int j=0;j<n;j++)
if(i&(1<<j))arr[m*n+j]=1;
}
/////////////////////////////////
head=(m+1)*n;L[head]=R[head]=head;
L[0]=head;R[head]=0;R[n-1]=head;L[head]=n-1;
U[0]=D[0]=0;
for (int j=1;j<n;j++){
L[j]=j-1;
R[j-1]=j;
U[j]=D[j]=j;
}
for (int i=1;i<=m;i++){
int last=0;
int first;
for (int j=0;j<n;j++){
if (arr[i*n+j]){
if(last!=0){
L[i*n+j]=last;
R[i*n+j]=first;
R[last]=i*n+j;
last=i*n+j;
}
else {
first=last=i*n+j;
L[first]=R[first]=first;
}
}
}
if(last)L[first]=last;
}
for (int j=0;j<n;j++){
int last=j;
for (int i=1;i<=m;i++){
if(arr[i*n+j]){
U[i*n+j]=last;
D[i*n+j]=j;
D[last]=i*n+j;
last=i*n+j;
C[i*n+j]=j;
S[j]++;
}
}
U[j]=last;
}
dfs(0,0);//DLX
printf("%d\n",ans);
return 0;
}