最大字段和问题 C++(穷举、分治法、动态规划)

问题描述

给定由n个整数(包含负整数)组成的序列a1,a2,…,an,求该序列子段和的最大值。规定当所有整数均为负值时定义其最大子段和为0

穷举法

最简单的方法就是穷举法,用一个变量指示求和的开始位置,一个变量指示结束位置,再一个变量指示当前要加和的位置,每一个开始位置对应n-i个结束位置,遍历一遍就能得到最大值

int maxSubArray(int a[], int n) {
   
   
	int maxsum = 0;
	for (int i = 0; i < n; i++) {
   
   //开始位置
		for (int j = i; j < n; j++) {
   
   //结束位置
			int nowsum = 0;
			for (int k = i; k <= j; k++) {
   
   
				nowsum += a[k];
				if (nowsum > maxsum)
					maxsum = nowsum;
			}
		}
	}
	return maxsum;
}

算法有三重循环,时间复杂性为O(n^3)

穷举法优化
当字段的开始下标确定后,要计算[i:j]的字段和可以利用上一次计算的[i:j-1]的字段和,加上a[j]就可以了

int maxSubArray2(int a[], int n) {
   
   
	int maxsum = 0;
	for (int i = 0; i < n; i++) {
   
   //开始位置
		int nowsum = 0;
		for (int j = i; j < n; j++) {
   
   //结束位置
			nowsum += a[j];
			if (nowsum > maxsum)
				maxsum = nowsum;
		}
	}
	return maxsum;
}

改进后的时间复杂度为O(n^2)

分治法

该问题也可以用分治法解决

分治策略思想如下:
将所给序列a[1:n]分成长度相同的两端a[1:n/2]a[n/2 +1:n],分别求出这两段的最大子段和,则整体序列a[1:n]的最大子段和有以下三种情况

  • a[1:n]的最大子段和与a[1:n/2]的最大子段和相同
  • a[1:n]的最大子段和与a[n/2 +1:n]的最大子段和相同
  • a[1:n]的最大子段和是a[1:n/2]最后一段加a[n/2 +1:n]最开始一段的和

前两种情况可以递归求得。对于第三种情况,可以发现,a[n/2]和a[n/2 +1]都在最大子段里,我们可以从a[n/2]向左、从a[n/2 +1]向右分别计算两个最大字段和s1和s2,s1+s2就是最大子段和

递归方程

MaxSum(low,high)={ max⁡(0, arr[low])if low=highmax⁡{ MaxSum(low,mid)MaxSum(mid+1,high)CrossSum(low,mid,high)otherwise \text{MaxSum}(low, high) = \begin{cases} \displaystyle \max\left(0,\, \text{arr}[low]\right) & \text{if } low = high \\ \displaystyle \max \begin{cases} \text{MaxSum}(low, mid) \\ \text{MaxSum}(mid+1, high) \\ \text{CrossSum}(low, mid, high) \end{cases} & \text{otherwise} \end{cases} MaxSum(low,high)= max(0,arr[low])max

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值