【回溯法】n皇后问题 C/C++ (附代码)

问题描述

在一个n*n的棋盘上放置彼此不受攻击的n个皇后,按照国际象棋规则,皇后可以攻击与其在同一行,同一列或者同一对角线的其他皇后,求合法摆放的方案数。

问题分析

通过递归和回溯的方法,逐行放置皇后,并在每一步检查当前位置是否安全。如果安全,则继续放置下一个皇后;如果不安全,则回溯到上一步,尝试其他位置。

代码

数据结构

  • int x[]:存放解向量,即第i个皇后的位置
  • int sum:记录解的个数
#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
using namespace std;
#define MAX 100
int n;
int sum = 0;//记录解的数量
int x[MAX];//解向量,第i个皇后的列位置

//检查能否放皇后
bool Place(int i) {
    for (int j = 1; j < i; j++)
        if ((abs(i - j) == abs(x[j] - x[i])) || x[j] == x[i])
            return false;
    return true;
}

void backtrack(int i) {
    if (i > n)
        sum++;
    else {
        for (int j = 1; j <= n; j++) {
            x[i] = j;
            if (Place(i)) {
                backtrack(i + 1);
            }
        }
    }
}

int main() {
    cin >> n;
    backtrack(1);
    cout << sum;
    return 0;
}

代码说明

代码中存在对皇后位置的显示约束隐式约束

  • 隐式约束:backtrack(int i)顺序摆放每一行的皇后,保证各个皇后不在同一行
  • 显示约束:Place(int i)确保对角线没有皇后,即abs(i - j) == abs(x[j] - x[i])返回false,且x[j] == x[i]返回false保证皇后不在同一列上

运行结果
在这里插入图片描述
八皇后问题有92个解,结果正确

详细分析

问题背景

八皇后问题是一个经典的回溯算法问题,最早由国际象棋棋手马克斯·贝瑟尔在1848年提出。问题的目标是在一个8x8的棋盘上放置8个皇后,使得它们互不攻击。这个问题可以推广到nxn的棋盘上,放置n个皇后。

算法思路

  1. 逐行放置皇后:从第一行开始,逐行放置皇后。每行放置一个皇后,确保其不与之前放置的皇后冲突。
  2. 检查冲突:在放置每个皇后时,检查其是否与之前放置的皇后在同一列或同一对角线上。如果冲突,则回溯到上一行,尝试其他位置。
  3. 递归与回溯:通过递归调用,逐行放置皇后,并在发现冲突时回溯,尝试其他可能的放置位置。

代码实现细节

  • Place函数:用于检查当前放置的皇后是否与之前放置的皇后冲突。通过比较列号和对角线距离来判断是否冲突。
  • backtrack函数:递归函数,用于逐行放置皇后。如果当前行放置成功,则递归调用下一行;如果所有行都放置成功,则增加解的计数。
  • 主函数:读取输入的n值,调用backtrack函数开始求解,并输出解的个数。

应用场景

八皇后问题不仅是一个经典的算法问题,还在实际中有广泛的应用,例如:

  • 调度问题:在资源调度中,确保资源分配不冲突。
  • 电路设计:在电路板设计中,确保元件布局不互相干扰。
  • 人工智能:在搜索算法中,用于解决约束满足问题。

示例

以n=4为例,可能的解为:

  1. [2, 4, 1, 3]
  2. [3, 1, 4, 2]

这两个解分别表示在4x4棋盘上放置4个皇后的合法位置。

性能优化

对于较大的n值,回溯算法的性能可能会下降。可以通过以下方法进行优化:

  • 剪枝:在递归过程中,提前剪除不可能的解,减少搜索空间。
  • 位运算:使用位运算来加速冲突检查,提高算法效率。
  • 并行计算:利用多核处理器,并行计算不同的分支,加快求解速度。

通过以上方法,可以显著提高八皇后问题的求解效率,适用于更大规模的棋盘。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值