问题描述
在一个n*n的棋盘上放置彼此不受攻击的n个皇后,按照国际象棋规则,皇后可以攻击与其在同一行,同一列或者同一对角线的其他皇后,求合法摆放的方案数。
问题分析
通过递归和回溯的方法,逐行放置皇后,并在每一步检查当前位置是否安全。如果安全,则继续放置下一个皇后;如果不安全,则回溯到上一步,尝试其他位置。
代码
数据结构
int x[]
:存放解向量,即第i个皇后的位置int sum
:记录解的个数
#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
using namespace std;
#define MAX 100
int n;
int sum = 0;//记录解的数量
int x[MAX];//解向量,第i个皇后的列位置
//检查能否放皇后
bool Place(int i) {
for (int j = 1; j < i; j++)
if ((abs(i - j) == abs(x[j] - x[i])) || x[j] == x[i])
return false;
return true;
}
void backtrack(int i) {
if (i > n)
sum++;
else {
for (int j = 1; j <= n; j++) {
x[i] = j;
if (Place(i)) {
backtrack(i + 1);
}
}
}
}
int main() {
cin >> n;
backtrack(1);
cout << sum;
return 0;
}
代码说明
代码中存在对皇后位置的显示约束和隐式约束
- 隐式约束:
backtrack(int i)
顺序摆放每一行的皇后,保证各个皇后不在同一行 - 显示约束:
Place(int i)
确保对角线没有皇后,即abs(i - j) == abs(x[j] - x[i])
返回false,且x[j] == x[i]
返回false保证皇后不在同一列上
运行结果
八皇后问题有92个解,结果正确
详细分析
问题背景
八皇后问题是一个经典的回溯算法问题,最早由国际象棋棋手马克斯·贝瑟尔在1848年提出。问题的目标是在一个8x8的棋盘上放置8个皇后,使得它们互不攻击。这个问题可以推广到nxn的棋盘上,放置n个皇后。
算法思路
- 逐行放置皇后:从第一行开始,逐行放置皇后。每行放置一个皇后,确保其不与之前放置的皇后冲突。
- 检查冲突:在放置每个皇后时,检查其是否与之前放置的皇后在同一列或同一对角线上。如果冲突,则回溯到上一行,尝试其他位置。
- 递归与回溯:通过递归调用,逐行放置皇后,并在发现冲突时回溯,尝试其他可能的放置位置。
代码实现细节
- Place函数:用于检查当前放置的皇后是否与之前放置的皇后冲突。通过比较列号和对角线距离来判断是否冲突。
- backtrack函数:递归函数,用于逐行放置皇后。如果当前行放置成功,则递归调用下一行;如果所有行都放置成功,则增加解的计数。
- 主函数:读取输入的n值,调用backtrack函数开始求解,并输出解的个数。
应用场景
八皇后问题不仅是一个经典的算法问题,还在实际中有广泛的应用,例如:
- 调度问题:在资源调度中,确保资源分配不冲突。
- 电路设计:在电路板设计中,确保元件布局不互相干扰。
- 人工智能:在搜索算法中,用于解决约束满足问题。
示例
以n=4为例,可能的解为:
- [2, 4, 1, 3]
- [3, 1, 4, 2]
这两个解分别表示在4x4棋盘上放置4个皇后的合法位置。
性能优化
对于较大的n值,回溯算法的性能可能会下降。可以通过以下方法进行优化:
- 剪枝:在递归过程中,提前剪除不可能的解,减少搜索空间。
- 位运算:使用位运算来加速冲突检查,提高算法效率。
- 并行计算:利用多核处理器,并行计算不同的分支,加快求解速度。
通过以上方法,可以显著提高八皇后问题的求解效率,适用于更大规模的棋盘。