大数据系列第四课:scala基础

彻底征服Scala模式匹配和类型系统

第一阶段:Spark streamingspark sqlkafkaspark内核原理(必须有一个大型项目经验);

第二阶段:spark运行的各种环境,各种故障的解决,性能优化(精通spark内核、运行原理);

第三阶段:流处理、机器学习为鳌头,需要首先掌握前两个阶段的内容;

跟随王家林老师的零基础讲解,注重动手实战,成为spark高数,笑傲大数据之林!

第一部分学习笔记

   //scala模式匹配类似java中的switch case
    //java中的switch case只对值进行匹配
    //scala中的模式匹配比java强很多不仅可以对值匹配还可以对类型、集合(map,list中的元素)

    //按值进行模式匹配
    def bigData(data : String): Unit ={
      data match {
        case "Spark" => println("Wow!!!") //不需要break
        case "Hadoop" => println("Ok")
        case _ => println("Something others")//不满足以上情况的所有情况
      }
    }
    //bigData("Hadoop")
    //bigData("Flink")

    def bigData2(data : String): Unit ={
      data match {
        case "Spark" => println("Wow!!!") //不需要break
        case "Hadoop" => println("Ok")
        case _ if data == "Flink" => println("Cool")//加入表达式
        case data_ if data_ == "Java" => println("haha" + " : " + data_)//data_变量来接收模式传进来的内容
        case _ => println("Something others")
      }
    }
    //bigData2("Spark")
    //bigData2("Flin")
    //bigData2("Flink")
    //bigData2("Java")

    //按类型进行模式匹配
    def exception(e: Exception): Unit ={
      e match {
        case fileException  : FileNotFoundException => println("File not found :" + fileException)
        case _ : Exception => println("Exception getting thread dump from executor Sex",e)
      }
    }
    //exception(new FileNotFoundException("oops"))

    //对scala中的集合进行模式匹配 //set map 相同
    def data(array : Array[String]): Unit ={
      array match {
        case Array("Scala") => println("Scala")
        case Array(spark,hadoop,flink) => println(spark + " : " + hadoop + " : " + flink)
        case Array("Spark", _*) => println("Spark...")
        case _ => println("Unknown")
      }
    }
    data(Array("Scala"))
    data(Array("Spark","Hadoop","Flink"))
    data(Array("Spark"))

    //case class模式匹配 样例类
    //1、case class相当于java中的bean
    //2、实例化
    //case class Person(name : String)//自动会使用val修饰,会生成伴生对象,apply方法
    case class Person()
    case class Worker(name : String, salary: Double)
    case class Student(name : String, score :Double) extends Person

    def sayHi(person : Person){
      person match{
        case Student(name,score) => println(name + " : " + score)
        case Worker(name,salary) => println(name + " : " + salary)
        case _ => println("Unknown")
      }
    }
    sayHi(Student("Saprk",6.6))

    def sayHi2(person : Person){
      person match{
        case Student(name,score) => println("I am student : " + name + " : " + score)
        case Worker(name,salary) => println("I am worker : " + name + " : " + salary)
        case _ => println("Unknown")
      }
    }
    sayHi2(Student("Saprk",6.6))

    //模式匹配 Some和None
    /*private val restServer =
    if (restServerEnabled) {
      val port = conf.getInt("spark.master.rest.port", 6066)
      Some(new StandaloneRestServer(host, port, conf, self, masterUrl))
    } else {
      None
    }*/

    /**
      * 类型参数
      * 1、泛型
      */
    //泛型类和泛型函数
    class Person1[T](val content : T){
      def getContent(id : T) = id + " _ " + content
    }
    val p = new Person1[String]("Spark")
    println(p.getContent("Scala"))

    //上边界 codec: Class[_ <:] CompressionCodec 类型直接的父子关系(上下边界)
    //下边界 codec: Class[_ :>] CompressionCodec

    //view Bounds 视图界定 支持对类型隐式转换 (判断上界下届)
    //view Bounds 语法 <% 对类型进行隐式转换
    //implicit def rddToSequenceFileRDDFunctions[K <% Writable: ClassTag, V <% Writable: ClassTag](
    //Writable: ClassTag
    //T:类型
    //类型[T]
    //在上下文中注入隐式值,而且注入的过程是自动

    class Compare[T : Ordering](val n1: T, val n2 : T){
      def bigger(implicit ordered : Ordering[T]) = if(ordered.compare(n1,n2) > 0) n1 else n2
    }

    println(new Compare[Int](8,3).bigger)
    println(new Compare[String]("Spark","Hadoop").bigger)

    Ordering[String]
    Ordering[Int]

    new Compare[String]("Spark","Hadoop").bigger
    //Manifest Context Bounds //泛型数组
    //[T : Manifest]
    //Array[T]
    /**
      * class Person[+T]  逆变和协变 子类
      */
    //[_] 相当于[T]  Dependency[_]相当于Dependency[T]

    //Manifest -> ClassTag(Manifest 演变为ClassTag)

    //bstract class RDD[T: ClassTag](
    //@transient private var _sc: SparkContext,
    //@transient private var deps: Seq[Dependency[_]]


    //T:ClassTag  根据运行时判断类型
    /**
      * {{{
      *   scala> def mkArray[T : ClassTag](elems: T*) = Array[T](elems: _*)
      *   mkArray: [T](elems: T*)(implicit evidence$1: scala.reflect.ClassTag[T])Array[T]
      *
      *   scala> mkArray(42, 13)
      *   res0: Array[Int] = Array(42, 13)
      *
      *   scala> mkArray("Japan","Brazil","Germany")
      *   res1: Array[String] = Array(Japan, Brazil, Germany)
      * }}}
      */


第二部分作业:阅读Spark源码 RDD、HadoopRDD、SparkContext、Master、Worker的源码,并分析里面使用的所有的模式匹配和类型参数的内容


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值