前言:
Llama 3.1 是 Meta(Facebook 的母公司)发布的一系列最先进的开源大语言模型。Llama 3.1 系列包括 8B(80 亿参数)、70B(700 亿参数)和 405B(4050 亿参数)模型。其中,405B 是 Meta 迄今为止最大的模型。
本地部署的硬件要求,请确认您的硬件是否能够正常运行,以免浪费时间
Windows:3060以上显卡+8G以上显存+16G内存,硬盘空间至少20G
Mac:M1或M2芯片 16G内存,20G以上硬盘空间
具体模型的显卡需求:
-
llama3.1-8b,至少需要8G的显存
-
llama3.1-70b,至少需要大约 70-75 GB 显存
-
llama3.1-405b,运行需要非常高的显存和硬件资源,至少需要大约 400-450 GB 显存,请谨慎选择。
如果确定没问题,请继续往下看。
一、下载Ollama
Ollama 是一个开源的大模型管理工具,它提供了丰富的功能,包括模型的训练、部署、监控等。通过Ollama,你可以轻松地管理本地的大模型,提高模型的训练速度和部署效率。此外,Ollama还支持多种机器学习框架,如TensorFlow、PyTorch等,使得你可以根据自己的需求选择合适的框架进行模型的训练。【官网下载地址需要的请留言】请根据您的系统下载对应的版本
二、安装使用Ollama
双击安装,默认安装在C盘。安装完成后打开 windows powershell 或 CMD 命令行终端,输入 ollama 命令,回车,即可显示 ollama 命令的使用帮助
三、下载llama 3.1模型文件
运行CMD命令,输入
ollama run llama3.1:8b
如果你的硬件强悍,显卡非常好,也下载更大的llam