【论文笔记】nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation

nnU-Net是一种基于深度学习的图像分割方法,它能自动配置参数以适应不同的生物医学图像数据集。方法通过固定参数、规则参数和经验参数来处理设计决策,强调了细节配置在性能上的重要性,而非仅仅依赖于网络架构。研究显示,不同的数据集需要不同的配置,模型的性能与数据的特性紧密相关。
摘要由CSDN通过智能技术生成

nnU-Net:一种基于深度学习的自配置生物医学图像分割方法

Results

nnU-Net的自动配置基于将领域知识提取成三个参数组:固定的、基于规则的和经验的参数。

  1. 收集不需要在数据集之间进行调整的设计决策,并确定稳健的通用配置(“fixed parameters”)。

  2. 对于尽可能多的剩余决策,以启发式规则的形式,制定特定数据集属性(“dataset fingerprint”)(包括图像大小、体素间距信息或类别比率等关键属性)和设计选择(“pipeline fingerprint”)之间的显式依赖关系,以实现几乎即时的适应应用(“rule-based parameters”)。

  3. 仅从数据中凭经验学习剩余决策(“empirical parameters”)。

batch size、patch size和网络拓扑结构的配置基于以下三个原则

  1. 使用较大的batch size。

  2. 使用较大的patch size以吸收更多的上下文信息。

  3. 使用足够深的网络拓扑结构,以保证感受野至少与patch size一样大,从而不会丢失上下文信息。

方法配置中的细节比体系结构变化对性能的影响更大

图a中前15种结构都来源于U-Net架构,证实了其对生物医学图像分割领域的影响。

前15种方法,没有一种常用的结构修改能被证明是在KiTS任务中表现良好的必要条件。

图4b体现了方法中细节的重要性,均使用了同种结构的方法,细节不同,取得的效果差别很大。

不同的数据集需要不同的配置

 

提取了23个数据集的数据指纹,证明了生物医学影像数据集的多样性,并揭示了模型缺少泛化能力的根本原因:在潜在的复杂关系下,合适的模型配置直接或间接地依赖于数据指纹,这一事实增大了方法配置的复杂性。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值