一、RDD创建方式包括:parallelize、textFile
1.parallelize:将一个已存在的集合生成RDD。
data=[1,2,3,4,5]
rdd=sc.parallelize(data)
2.textFile:通过读取外部文件生成RDD
rdd = sc.textFile("demo.txt")
二、将RDD显示的方法包括:foreach()、collect()
rdd.foreach(print)
rdd.collect()
三、RDD的操作:包括两类,转换操作和行动操作。
1.转换操作中的常用操作有:
filter()、map()、flatMap()、groupBy()、reduceByKey()。
(1)filter(func):用于筛选。
例1:将data中含有hadoop的元素筛选出来:
data=["spark is good","hadoop is better","hadoop is fast"]
rdd=sc.parallelize(data)
rdd1=rdd.filter(lambda x:"hadoop" in x)
rdd1.foreach(print)
运行结果是:
hadoop is better
hadoop is fast
例2:将data2中可以被2整除的数字筛选出来:
data=[12,2,43,25,64,45,86]
rdd=sc.parallelize(data)
rdd1=rdd.filter(lambda x:x%2==0)
rdd1.foreach(print)
</

本文总结了在Spark中使用Python进行RDD编程的主要内容,包括通过parallelize和textFile创建RDD,以及如何使用foreach、collect等方法显示RDD。重点讲解了转换操作如filter、map、flatMap、groupBy、reduceByKey,以及行动操作如count、collect、first、take和reduce的用法,并给出了多个实例演示。
最低0.47元/天 解锁文章
591





