RDD编程(python版)总结

本文总结了在Spark中使用Python进行RDD编程的主要内容,包括通过parallelize和textFile创建RDD,以及如何使用foreach、collect等方法显示RDD。重点讲解了转换操作如filter、map、flatMap、groupBy、reduceByKey,以及行动操作如count、collect、first、take和reduce的用法,并给出了多个实例演示。

一、RDD创建方式包括:parallelize、textFile
1.parallelize:将一个已存在的集合生成RDD。

data=[1,2,3,4,5]
rdd=sc.parallelize(data)

2.textFile:通过读取外部文件生成RDD

rdd = sc.textFile("demo.txt")

二、将RDD显示的方法包括:foreach()、collect()

rdd.foreach(print)
rdd.collect()

三、RDD的操作:包括两类,转换操作和行动操作。
1.转换操作中的常用操作有:
filter()、map()、flatMap()、groupBy()、reduceByKey()。
(1)filter(func):用于筛选。
例1:将data中含有hadoop的元素筛选出来:

data=["spark is good","hadoop is better","hadoop is fast"]
rdd=sc.parallelize(data)
rdd1=rdd.filter(lambda x:"hadoop" in x)
rdd1.foreach(print)

运行结果是:

hadoop is better
hadoop is fast

例2:将data2中可以被2整除的数字筛选出来:

data=[12,2,43,25,64,45,86]
rdd=sc.parallelize(data)
rdd1=rdd.filter(lambda x:x%2==0)
rdd1.foreach(print)
</
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值