使用Flink实现MySQL到Kafka的数据流转换

使用Flink实现MySQL到Kafka的数据流转换

本篇博客将介绍如何使用Flink将数据从MySQL数据库实时传输到Kafka,这是一个常见的用例,适用于需要实时数据connector的场景。
在这里插入图片描述

环境准备

在开始之前,确保你的环境中已经安装了以下软件:
Apache Flink 准备相关pom依赖

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>org.example</groupId>
    <artifactId>EastMoney</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <maven.compiler.source>8</maven.compiler.source>
        <maven.compiler.target>8</maven.compiler.target>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients_2.11</artifactId>
            <version>1.14.0</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-api-scala-bridge_2.11</artifactId>
            <version>1.14.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-planner_2.11</artifactId>
            <version>1.14.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-api-scala_2.11</artifactId>
            <version>1.14.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-jdbc_2.11</artifactId>
            <version>1.14.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-csv</artifactId>
            <version>1.14.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-kafka_2.11</artifactId>
            <version>1.14.0</version>
        </dependency>

        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>8.0.25</version>
        </dependency>
    </dependencies>

</project>

MySQL数据库,初始化mysql表

CREATE TABLE `t_stock_code_price` (
  `id` bigint NOT NULL AUTO_INCREMENT,
  `code` varchar(64) CHARACTER SET utf8mb4 COLLATE utf8mb4_0900_ai_ci NOT NULL COMMENT '股票代码',
  `name` varchar(64) CHARACTER SET utf8mb4 COLLATE utf8mb4_0900_ai_ci NOT NULL COMMENT '股票名称',
  `close` double DEFAULT NULL COMMENT '最新价',
  `change_percent` double DEFAULT NULL COMMENT '涨跌幅',
  `change` double DEFAULT NULL COMMENT '涨跌额',
  `volume` double DEFAULT NULL COMMENT '成交量(手)',
  `amount` double DEFAULT NULL COMMENT '成交额',
  `amplitude` double DEFAULT NULL COMMENT '振幅',
  `turnover_rate` double DEFAULT NULL COMMENT '换手率',
  `peration` double DEFAULT NULL COMMENT '市盈率',
  `volume_rate` double DEFAULT NULL COMMENT '量比',
  `hign` double DEFAULT NULL COMMENT '最高',
  `low` double DEFAULT NULL COMMENT '最低',
  `open` double DEFAULT NULL COMMENT '今开',
  `previous_close` double DEFAULT NULL COMMENT '昨收',
  `pb` double DEFAULT NULL COMMENT '市净率',
  `create_time` varchar(64) NOT NULL COMMENT '写入时间',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=5605 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

Kafka消息队列

1. 启动zookeeper
 zkServer start
2. 启动kafka服务
 kafka-server-start /opt/homebrew/etc/kafka/server.properties
3. 创建topic
 kafka-topics --create --bootstrap-server 127.0.0.1:9092 --replication-factor 1 --partitions 1 --topic east_money
4. 消费数据
 kafka-console-consumer --bootstrap-server 127.0.0.1:9092 --topic east_money --from-beginning

步骤解释

获取流执行环境:首先,我们通过StreamExecutionEnvironment.getExecutionEnvironment获取Flink的流执行环境,并设置其运行模式为流处理模式。

创建流表环境:接着,我们通过StreamTableEnvironment.create创建一个流表环境,这个环境允许我们使用SQL语句来操作数据流。

val senv = StreamExecutionEnvironment.getExecutionEnvironment
      .setRuntimeMode(RuntimeExecutionMode.STREAMING)
    val tEnv = StreamTableEnvironment.create(senv)

定义MySQL数据源表:我们使用一个SQL语句创建了一个临时表t_stock_code_price,这个表代表了我们要从MySQL读取的数据结构和连接信息。

val source_table =
      """
        |CREATE TEMPORARY TABLE t_stock_code_price (
        |  id BIGINT NOT NULL,
        |  code STRING NOT NULL,
        |  name STRING NOT NULL,
        |  `close` DOUBLE,
        |  change_percent DOUBLE,
        |  change DOUBLE,
        |  volume DOUBLE,
        |  amount DOUBLE,
        |  amplitude DOUBLE,
        |  turnover_rate DOUBLE,
        |  peration DOUBLE,
        |  volume_rate DOUBLE,
        |  hign DOUBLE,
        |  low DOUBLE,
        |  `open` DOUBLE,
        |  previous_close DOUBLE,
        |  pb DOUBLE,
        |  create_time STRING NOT NULL,
        |  PRIMARY KEY (id) NOT ENFORCED
        |) WITH (
        |   'connector' = 'jdbc',
        |   'url' = 'jdbc:mysql://localhost:3306/mydb',
        |   'driver' = 'com.mysql.cj.jdbc.Driver',
        |   'table-name' = 't_stock_code_price',
        |   'username' = 'root',
        |   'password' = '12345678'
        |)
        |""".stripMargin

    tEnv.executeSql(source_table)

定义Kafka目标表:然后,我们定义了一个Kafka表re_stock_code_price_kafka,指定了Kafka的连接参数和表结构。

tEnv.executeSql(
      "CREATE TABLE re_stock_code_price_kafka (" +
        "`id` BIGINT," +
        "`code` STRING," +
        "`name` STRING," +
        "`close` DOUBLE," +
        "`change_percent` DOUBLE," +
        "`change` DOUBLE," +
        "`volume` DOUBLE," +
        "`amount` DOUBLE," +
        "`amplitude` DOUBLE," +
        "`turnover_rate` DOUBLE," +
        "`operation` DOUBLE," +
        "`volume_rate` DOUBLE," +
        "`high` DOUBLE," +
        "`low` DOUBLE," +
        "`open` DOUBLE," +
        "`previous_close` DOUBLE," +
        "`pb` DOUBLE," +
        "`create_time` STRING," +
        "rise int"+
        ") WITH (" +
        "'connector' = 'kafka'," +
        "'topic' = 'east_money'," +
        "'properties.bootstrap.servers' = '127.0.0.1:9092'," +
        "'properties.group.id' = 'mysql2kafka'," +
        "'scan.startup.mode' = 'earliest-offset'," +
        "'format' = 'csv'," +
        "'csv.field-delimiter' = ','" +
        ")"
    )

数据转换和写入:最后,我们执行了一个插入操作,将从MySQL读取的数据转换(这里通过case when语句添加了一个新字段rise)并写入到Kafka中。这个可以实现任何的sql etl 来满足我们的需求。

    tEnv.executeSql("insert into re_stock_code_price_kafka select *,case when change_percent>0 then 1 else 0 end as rise from t_stock_code_price")

全部代码

package org.east

import org.apache.flink.api.common.RuntimeExecutionMode
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment

object Mysql2Kafka {

  def main(args: Array[String]): Unit = {
    val senv = StreamExecutionEnvironment.getExecutionEnvironment
      .setRuntimeMode(RuntimeExecutionMode.STREAMING)
    val tEnv = StreamTableEnvironment.create(senv)

    val source_table =
      """
        |CREATE TEMPORARY TABLE t_stock_code_price (
        |  id BIGINT NOT NULL,
        |  code STRING NOT NULL,
        |  name STRING NOT NULL,
        |  `close` DOUBLE,
        |  change_percent DOUBLE,
        |  change DOUBLE,
        |  volume DOUBLE,
        |  amount DOUBLE,
        |  amplitude DOUBLE,
        |  turnover_rate DOUBLE,
        |  peration DOUBLE,
        |  volume_rate DOUBLE,
        |  hign DOUBLE,
        |  low DOUBLE,
        |  `open` DOUBLE,
        |  previous_close DOUBLE,
        |  pb DOUBLE,
        |  create_time STRING NOT NULL,
        |  PRIMARY KEY (id) NOT ENFORCED
        |) WITH (
        |   'connector' = 'jdbc',
        |   'url' = 'jdbc:mysql://localhost:3306/mydb',
        |   'driver' = 'com.mysql.cj.jdbc.Driver',
        |   'table-name' = 't_stock_code_price',
        |   'username' = 'root',
        |   'password' = '12345678'
        |)
        |""".stripMargin

    tEnv.executeSql(source_table)

    val result = tEnv.executeSql("select * from t_stock_code_price")
    result.print()


    tEnv.executeSql(
      "CREATE TABLE re_stock_code_price_kafka (" +
        "`id` BIGINT," +
        "`code` STRING," +
        "`name` STRING," +
        "`close` DOUBLE," +
        "`change_percent` DOUBLE," +
        "`change` DOUBLE," +
        "`volume` DOUBLE," +
        "`amount` DOUBLE," +
        "`amplitude` DOUBLE," +
        "`turnover_rate` DOUBLE," +
        "`operation` DOUBLE," +
        "`volume_rate` DOUBLE," +
        "`high` DOUBLE," +
        "`low` DOUBLE," +
        "`open` DOUBLE," +
        "`previous_close` DOUBLE," +
        "`pb` DOUBLE," +
        "`create_time` STRING," +
        "rise int"+
        ") WITH (" +
        "'connector' = 'kafka'," +
        "'topic' = 'east_money'," +
        "'properties.bootstrap.servers' = '127.0.0.1:9092'," +
        "'properties.group.id' = 'mysql2kafka'," +
        "'scan.startup.mode' = 'earliest-offset'," +
        "'format' = 'csv'," +
        "'csv.field-delimiter' = ','" +
        ")"
    )
    tEnv.executeSql("insert into re_stock_code_price_kafka select *,case when change_percent>0 then 1 else 0 end as rise from t_stock_code_price")

  }
}

如有遇到问题可以找小编沟通交流哦。另外小编帮忙辅导大课作业,学生毕设等。不限于python,java,大数据,模型训练等。
在这里插入图片描述

  • 16
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
上百节课视频详细讲解,需要的小伙伴自行百度网盘下载,链接见附件,永久有效。 共课程包含9个章节:Flink安装部署与快速入门、Flink批处理API、Flink流处理API、Flink高级API、Flink-Table与SQL、Flink-Action综合练习、Flink-高级特性和新特性、Flink多语言开发、Flink性能调优 课程目录: Flink-day01 00-[了解]-课程介绍 01-[了解]-Flink概述 02-[掌握]-Flink安装部署-local本地模式 03-[掌握]-Flink安装部署-Standalone独立集群模式 04-[掌握]-Flink安装部署-Standalone-HA高可用集群模式 05-[重点]-Flink安装部署-On-Yarn-两种提交模式 06-[重点]-Flink安装部署-On-Yarn-两种提交模式-演示 07-[了解]-Flink入门案例-前置说明 08-[掌握]-Flink入门案例-环境准备 09-[掌握]-Flink入门案例-代码实现-1-DataSet 10-[掌握]-Flink入门案例-代码实现-2-DataStream流批一体-匿名内部类版 11-[掌握]-Flink入门案例-代码实现-2-DataStream流批一体-Lambda版 12-[掌握]-Flink入门案例-代码实现-2-DataStream流批一体-On-Yarn 13-[掌握]-Flink原理初探-角色分工-执行流程-DataFlow 14-[掌握]-Flink原理初探-TaskSlot和TaskSlotSharing 15-[掌握]-Flink原理初探-执行流程图生成 Flink-day02 01-[理解]-流处理核心概念说明 02-[掌握]-Source-基于集合 03-[掌握]-Source-基于文件 04-[掌握]-Source-基于Socket 05-[掌握]-Source-自定义Source-随机生成订单数据 06-[掌握]-Source-自定义Source-实时加载MySQL数据 07-[掌握]-Source-Transformation-基本操作 08-[掌握]-Source-Transformation-合并和连接 09-[掌握]-Source-Transformation-拆分和选择 10-[掌握]-Source-Transformation-重平衡分区 11-[掌握]-Source-Transformation-其他分区 12-[掌握]-Source-Sink-基于控制台和文件 13-[掌握]-Source-Sink-自定义Sink 14-[了解]-Connectors-JDBC 15-[重点]-Connectors-Flink整合Kafka-Source 16-[重点]-Connectors-Flink整合Kafka-Sink-实时ETL 17-[了解]-Connectors-Redis Flink-day03 01-[了解]-Flink高级API-四大基石介绍 02-[了解]-Flink高级API-Window-分类和API介绍 03-[掌握]-Flink高级API-Window-基于时间的滑动和滚动窗口 04-[了解]-Flink高级API-Window-基于数量的滑动和滚动窗口 05-[了解]-Flink高级API-Window-会话窗口 06-[理解]-Flink高级API-Time-时间分类和事件时间的重要性及Watermaker的引入 07-[理解]-Flink高级API-Time-Watermaker概念详解 08-[理解]-Flink高级API-Time-Watermaker图解 09-[掌握]-Flink高级API-Time-Watermaker-代码演示 10-[了解]-Flink高级API-Time-Watermaker-代码演示-理论验证 11-[掌握]-Flink高级API-Time-Watermaker-outputTag-allowedlateness解决数据丢失 12-[了解]-Flink高级API-State-Flink中状态的自动管理 13-[了解]-Flink高级API-State-有状态计算和无状态计算 14-[了解]-Flink高级API-State-状态分类 15-[了解]-Flink高级API-State-keyState代码演示 16-[了解]-Flink高级API-State-OperatorState代码演示 Flink-day04-07等等
上百节课视频详细讲解,需要的小伙伴自行百度网盘下载,链接见附件,永久有效。 课程亮点: 1.知识体系完备,从小白到大神各阶段读者均能学有所获。 2.生动形象,化繁为简,讲解通俗易懂。 3.结合工作实践及分析应用,培养解决实际问题的能力。 4.每一块知识点, 都有配套案例, 学习不再迷茫。 课程内容: 1.Flink框架简介 2.Flink集群搭建运维 3.Flink Dataset开发 4.Flink 广播变量,分布式缓存,累加器 5.Flink Datastream开发 6.Flink Window操作 7.Flink watermark与侧道输出 8.Flink状态计算 9.Flink容错checkpoint与一致性语义 10.Flink进阶 异步IO,背压,内存管理 11.Flink Table API与SQL 课程目录介绍 第一章 Flink简介 01.Flink的引入 02.什么是Flink 03.Flink流处理特性 04.Flink基石 05.批处理与流处理 第二章 Flink架构体系 01.Flink中重要角色 02.无界数据流与有界数据流 03.Flink数据流编程模型 04.Libraries支持 第三章 Flink集群搭建 01.环境准备工作 02.local模式 03.Standalone集群模式 04.Standalone-HA集群模式 05.Flink On Yarn模式-介绍 06.Flink On Yarn模式-准备工作 07.Flink On Yarn模式-提交方式-Session会话模式 08.Flink On Yarn模式-提交方式-Job分离模式 09. Flink运行架构-Flink程序结构 10. Flink运行架构-Flink并行数据流 11. Flink运行架构-Task和Operator chain 12. Flink运行架构-任务调度与执行 13. Flink运行架构-任务槽与槽共享 第四章 Dataset开发 01.入门案例 02.入门案例-构建工程、log4j.properties 03.入门案例-代码运行yarn模式运行 04.DataSource-基于集合 05.DataSource-基于文件 06.Transformation开发 07.Datasink-基于集合 08.Datasink-基于文件 09.执行模式-本地执行 10.执行模式-集群执行 11.广播变量 12.累加器 13.分布式缓存 14.扩展并行度的设置 第五章 DataStream开发 01.入门案例-流处理流程 02.入门案例-示例、参考代码 03.流处理常见Datasource 04.Datasource基于集合 05.Datasource基于文件 06.Datasource基于网络套接字 07.Datasource-自定义source-SourceFunction 08.Datasource-自定义source-ParallelSourceFunction 09.Datasource-自定义source-RichParallelSourceFunction 10.Datasource-自定义source-MysqlSource 11.Datasource-自定义source-KafkaSource 12.DataStream-transformations 13.DataSink-输出数据到本地文件 14.DataSink-输出数据到本地集合 15.DataSink-输出数据到HDFS 16.DataSink-输出数据到mysql,kafka,Redis 第六章 Flink中Window 01.为什么需要window 02.什么是window 03.Flink支持的窗口划分方式 04.Time-window之tumbling-time-window 05.Time-window之sliding-time-window 06.Time-window之session-window 07.Count-window之tumbling-count-window 08.Count-window之sliding-count-window 09.window-Apply函数 第七章 Eventime-watermark 01.时间分类 02.watermark之数据延迟产生 03.watermark之解决数据延迟到达 04.watermark综合案例 05.watermark之数据丢失 06.watermark+侧道输出保证数据不丢失 等等共十一章节
Flink是一个分布式流处理框架,能够处理和分析实时数据流Kafka是一个分布式流式数据处理平台,能够实时地收集、存储和处理大规模数据流。 在Flink中读取Kafka数据并将其写入MySQL数据库需要以下步骤: 1. 配置Kafka Consumer:通过配置Kafka Consumer相关的属性,如bootstrap.servers(Kafka的地址)、group.id(消费者组标识)、topic(要读取的主题名称)等。 2. 创建Flink Execution Environment:通过创建Flink执行环境,可以定义Flink作业的运行模式和相关配置。 3. 创建Kafka Data Source:使用FlinkKafka Consumer API创建一个Kafka数据源,通过指定Kafka Consumer的配置和要读取的主题,可以从Kafka中获取数据。 4. 定义数据转换逻辑:根据需要,可以使用Flink提供的转换算子对Kafka数据进行处理,如map、filter、reduce等。 5. 创建MySQL Sink:通过配置MySQL数据库的连接信息,如URL、用户名、密码等,创建一个MySQL数据池。 6. 将数据写入MySQL:通过使用FlinkMySQL Sink API,将经过转换后的数据写入MySQL数据库。可以指定要写入的表名、字段映射关系等。 7. 设置并执行作业:将Kafka数据源和MySQL Sink绑定在一起,并设置作业的并行度,然后执行Flink作业。 通过以上步骤,我们可以将Kafka中的数据读取出来,并经过转换后写入MySQL数据库,实现了从KafkaMySQL的数据传输。 需要注意的是,在配置Kafka Consumer和MySQL数据库时,要确保其正确性和可用性,以确保数据的正确读取和写入。同时,在处理大规模数据流时,还需要考虑分布式部署、容错性和高可用性等方面的问题,以保证系统的稳定性和性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值