你可以通过以下几种方式获取人工智能领域文章的开源代码:
- 查看论文的附录或支持材料,很多作者会提供链接;
- 在GitHub上搜索论文标题或作者,许多研究者会将代码托管在此平台;
- 访问特定的开源平台,如TensorFlow Hub或PyTorch Hub,寻找相关项目;
- 使用文献管理工具(如ResearchGate),有时可以直接联系作者获取代码。
以下是一些常用的收录网站,可以帮助你找到人工智能领域的文章及其开源代码:
-
arXiv:一个免费的预印本存储库,涵盖物理、数学、计算机科学等多个领域,许多人工智能相关论文都可以在这里找到。
-
ResearchGate:一个学术社交网络,研究人员可以分享他们的论文和代码,用户可以直接联系作者请求资源。
-
Papers with Code:专注于机器学习和计算机视觉领域,提供论文及其相应的代码实现,便于查找和比较不同算法。
-
GitHub:许多研究人员会将他们的代码托管在GitHub上,可以通过搜索论文标题或相关关键词找到代码库。
-
Google Scholar:一个学术搜索引擎,可以查找论文及其引用情况,有时会链接到代码或数据集。
-
Open Review:这是一个开放的同行评审平台,许多新兴的人工智能论文会在此发布,并附带代码链接。
这些平台都是获取最新研究和开源代码的好地方!如果你有特定的主题或方向,也可以针对性地搜索。
arXiv 本身没有专门的功能来筛选附带开源代码的文章。不过,你可以使用以下方法来寻找这类文章:
-
查找相关的论文:在 arXiv 上搜索特定主题或关键词,并查看每篇论文的附录或引用部分,作者通常会在这里提供代码链接。
-
使用关键字:在搜索时,可以加上“code”或“implementation”等关键词,可能会找到明确提到代码的文章。
-
结合其他平台:可以同时在 arXiv 和 Papers with Code 等网站上搜索同一论文,后者会列出与论文相关的代码实现。
-
查看作者的个人页面或GitHub:很多研究者会在个人网页或GitHub上发布他们的研究代码,你可以根据论文作者的信息进行查找。
虽然没有直接的筛选功能,但通过这些方法,你仍然可以找到很多附带开源代码的文章。