09.数组

数组

使用
  • 声明:int[] aint a[]
  • 创建数组:
    • 用默认值新建:int[] a = new int[100]
    • 自定义初始化值的新建:int[] a = {2,3,5,7,11,13};
    • 匿名数组新建:new int[] {17,15,23,52};
  • ps:下标是从0开始的
  • ps:数组的初始化默认值
    • 数字数组创建时默认为0
    • Boolean数组创建时为false
    • 对象数组创建时为null
  • ps:数组一旦被创建就不能被改变大小了,只能改变元素内容
  • ps:数组长度允许为0,数组长度为0与为空不一样
常用方法
  • array.length获取长度
  • Arrays.toString() 返回包含数组所有值的字符串
  • Arrays.copyOf()拷贝和 Arrays.copyOfRange()
  • Arrays.sort()使用了优化过的快速排序算法
  • Arrays.binarySearch()使用二分搜索算法查找值,并且返回下标值
  • Arrays.fill()设置所有元素为xx
  • equals()如果数组大小相同,每个元素对应相等,返回true
for each循环
  • 语法格式:for(variable:collection) statment
  • 使用要求:一个数组或者是实现了Iterable接口的对象,例如ArrayList
数组的拷贝
  • 拷贝数组内容到新数组去的正确方法是:int[] a1=Arrays.copyOf(a2,a2.length);,其中第二个参数是数组长度,若需要扩充数组大小可以a2 = Arrays.copyOf(a2,2*a2.length);,此时多余的元素空位将会按照数组默认赋值来
  • 若为int[] a1 = a2;,只是数组所在地址的地址位置的值传递,所以两个变量指向的依旧是同一个数组
多维数组

类似于一维数组的创建和使用
其实多维数组的内部原理为,数组的数组,即数组的元素中存入别的数组的内存地址

weixin063传染病防控宣传微信小程序系统的设计与实现+springboot后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
pytorch-09.ipynb是一个使用PyTorch库进行深度学习实践的笔记本文件。PyTorch是一个基于Python的深度学习框架,它提供了方便简洁的API接口,使得深度学习模型的构建和训练变得更加容易。 在这个笔记本文件中,我推测可能包括以下内容: 1. 张量的基本概念和操作:张量是PyTorch中最基本的数据类型,类似于Numpy中的多维数组。这个笔记本可能会介绍如何创建和操作张量,以及张量在深度学习中的应用。 2. 自动梯度计算:PyTorch通过自动梯度计算(Autograd)模块实现了计算图和反向传播。这个笔记本可能会介绍如何使用PyTorch的autograd模块来计算张量的导数,并利用导数进行模型参数的更新。 3. 模型构建和训练:深度学习模型的构建和训练是PyTorch的核心功能。这个笔记本可能会介绍如何使用PyTorch构建各种类型的神经网络模型(如全连接网络、卷积神经网络和循环神经网络)并进行训练。 4. 数据加载和预处理:在深度学习中,数据的加载和预处理是非常重要的一步。这个笔记本可能会介绍如何使用PyTorch的数据加载器和数据转换工具进行数据的加载和处理。 5. 模型性能评估和调优:在实际应用中,评估模型性能和进行调优是不可或缺的步骤。这个笔记本可能会介绍如何使用PyTorch进行模型性能的评估,并介绍一些常见的调优方法,如学习率调整、正则化和dropout等。 总之,这个笔记本文件可能会提供一些关于PyTorch库的基本操作和深度学习模型构建的实践指南,帮助读者更好地理解和应用PyTorch进行深度学习任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值