一 简介
Sqoop 是一款开源的工具,主要用于在 Hadoop(Hive) 与传统的数据库( mysql 、 postgresql等)间进行数据的传递。可以将关系型数据库( MySQL ,Oracle ,Postgres等)中的数据导入到 HDFS 中,也可以将 HDFS 的数据导进到关系型数据库 中。
二 安装
1、下载、上传并解压 将下载的安装包 sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz 上传到虚拟机中; 解压缩软件包;
tar zxvf sqoop-1.4.7.bin__hadoop-2.6.0.tar.gz mv sqoop-1.4.7.bin__hadoop-2.6.0/ ../servers/sqoop-1.4.7/
2、增加环境变量,并使其生效
vi /etc/profile # 增加以下内容 export SQOOP_HOME=/opt/servers/sqoop-1.4.7 export PATH=$PATH:$SQOOP_HOME/bin source /etc/profile
3、创建、修改配置文件
# 配置文件位置 $SQOOP_HOME/conf;要修改的配置文件为 sqoop-env.sh cp sqoop-env-template.sh sqoop-env.sh vi sqoop-env.sh # 在文件最后增加以下内容 export HADOOP_COMMON_HOME=/opt/servers/hadoop-2.9.2 export HADOOP_MAPRED_HOME=/opt/servers/hadoop-2.9.2 export HIVE_HOME=/opt/servers/hive-2.3.7
4、拷贝JDBC驱动程序
cp /opt/lagou/servers/hive-2.3.7/lib/mysql-connector-java5.1.46.jar /opt/lagou/servers/sqoop-1.4.7/lib/
5、拷贝 $HIVE_HOME/lib 下的 hive-common-2.3.7.jar
cp $HIVE_HOME/lib/hive-common-2.3.7.jar $SQOOP_HOME/lib/
6、json-20170516.jar 拷贝
cp $HADOOP_HOME/share/hadoop/tools/lib/json-20170516.jar $SQOOP_HOME/lib/
验证
sqoop version
三 应用
3.1 案例一 mysql中的某表数据导入到HDFS
(1)数据准备
#创建数据库
CREATE DATABASE sqoop;
use sqoop;
CREATE TABLE sqoop.goodtbl(
gname varchar(50),
serialNumber int,
price int,
stock_number int,
create_time date);
#创建造数据的函数
DROP FUNCTION IF EXISTS `rand_string`;
DROP PROCEDURE IF EXISTS `batchInsertTestData`;
-- 替换语句默认的执行符号,将;替换成 //
DELIMITER //
CREATE FUNCTION `rand_string` (n INT) RETURNS VARCHAR(255)
CHARSET 'utf8'
BEGIN
DECLARE char_str varchar(200) DEFAULT
'0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ';
DECLARE return_str varchar(255) DEFAULT '';
DECLARE i INT DEFAULT 0;
WHILE i < n DO
SET return_str = concat(return_str,
substring(char_str, FLOOR(1 + RAND()*36), 1));
SET i = i+1;
END WHILE;
RETURN return_str;
END
//
CREATE PROCEDURE `batchInsertTestData` (m INT, n INT)
BEGIN
DECLARE i INT DEFAULT 0;
WHILE i < n DO
insert into goodtbl (gname, serialNumber, price,
stock_number, create_time)
values (rand_string(6), i+m, ROUND(RAND()*100),
FLOOR(RAND()*100), now());
SET i = i+1;
END WHILE;
END
//
delimiter ;
#执行函数
call batchInsertTestData(1,100)
(2)把数据库表中数据全部导入hdfs
sqoop import \
--connect jdbc:mysql://linux126:3306/sqoop \
--username hive \
--password 12345678 \
--table goodtbl \
--target-dir /sqoop/goodtbl \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t"
(3)把数据库表中数据条件查询导入hdfs
sqoop import \
--connect jdbc:mysql://linux126:3306/sqoop \
--username hive \
--password 12345678 \
--target-dir /sqoop/goodtbl/condition \
--append \
-m 1 \
--fields-terminated-by "\t" \
--query 'select gname, serialNumber, price, stock_number,
create_time from goodtbl where price>88 and $CONDITIONS;'
(4)导入指定的列
sqoop import \
--connect jdbc:mysql://linux126:3306/sqoop \
--username hive \
--password 12345678 \
--target-dir /sqoop/goodtbl/column \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t" \
--columns gname,serialNumber,price \
--table goodtbl
(5)导入查询数据(使用关键字)
sqoop import \
--connect jdbc:mysql://linux126:3306/sqoop \
--username hive \
--password 12345678 \
--target-dir /sqoop/goodtbl/where \
--delete-target-dir \
-m 1 \
--fields-terminated-by "\t" \
--table goodtbl \
--where "price>=68"
启动多个Map Task导入数据
sqoop import \
-Dorg.apache.sqoop.splitter.allow_text_splitter=true \
--connect jdbc:mysql://linux126:3306/sqoop \
--username hive \
--password 12345678 \
--target-dir /sqoop/goodtbl/split \
--delete-target-dir \
--fields-terminated-by "\t" \
--table goodtbl \
--split-by gname
3.2 案例二MySQL 到 Hive
sqoop import \
--connect jdbc:mysql://linux126:3306/sqoop \
--username hive \
--password 12345678 \
--table goodtbl \
--hive-import \
--create-hive-table \
--fields-terminated-by "\t" \
--hive-overwrite \
--hive-table mydb.goodtbl \
-m 1
参数说明:
hive-import。必须参数,指定导入hive
hive-database。Hive库名(缺省值default)
hive-table。Hive表名
fields-terminated-by。Hive字段分隔符
hive-overwrite。覆盖中已经存在的数据
create-hive-table。创建好 hive 表,但是表可能存在错误。不建议使用这个参
数,建议提前建好表
3.3 导出数据
hive->mysql
sqoop export \
--connect jdbc:mysql://linux126:3306/sqoop \
--username hive \
--password 12345678 \
--table goodtbl2 \
--num-mappers 1 \
--export-dir /user/hive/warehouse/mydb.db/goodtbl \
--input-fields-terminated-by "\t"
手动 增量更新
call batchInsertTestData(200, 600);
sqoop import \
--connect jdbc:mysql://linux126:3306/sqoop \
--username hive --password 12345678 \
--table goodtbl \
--incremental append \
--hive-import \
--fields-terminated-by "\t" \
--hive-table mydb.goodtbl \
--check-column serialNumber \
--last-value 100 \
-m 1
job 增量更新
echo -n "12345678" > sqoopPWD.pwd
hdfs dfs -mkdir -p /sqoop/pwd
hdfs dfs -put sqoopPWD.pwd /sqoop/pwd
hdfs dfs -chmod 400 /sqoop/pwd/sqoopPWD.pwd
sqoop job --create myjob1 -- import \
--connect jdbc:mysql://linux126:3306/sqoop?useSSL=false \
--username hive \
--password-file /sqoop/pwd/sqoopPWD.pwd \
--table goodtbl \
--incremental append \
--hive-import \
--hive-table mydb.goodtbl \
--check-column serialNumber \
--last-value 0 \
-m 1
查看job
sqoop job --list
sqoop job --show myjob1
执行job
sqoop job --exec myjob1
删除job
sqoop job --delete myjob1
注:以上为本人小小总结,如果对您起到了一点点帮助,请给予我一点鼓励,在下方点个小小的赞,谢谢,如有错误之处,望不吝指出,非常感谢!