JavaScript 浮点数运算的精度问题
在 JavaScript 中整数和浮点数都属于 Number 数据类型,所有数字都是以 64 位浮点数形式储存,即便整数也是如此。 所以我们在打印 1.00 这样的浮点数的结果是 1 而非 1.00 。在一些特殊的数值表示中,例如金额,这样看上去有点变扭,但是至少值是正确了。然而要命的是,当浮点数做数学运算的时候,你经常会发现一些问题,举几个例子:
--- 加法例子:
---减法例子:
---乘法例子:
---除法例子
问题的原因
JavaScript 里的数字是采用 IEEE 754 标准的 64 位双精度浮点数。该规范定义了浮点数的格式,对于64位的浮点数在内存中的表示,最高的1位是符号位,接着的11位是指数,剩下的52位为有效数字,具体:
第0位:符号位, s 表示 ,0表示正数,1表示负数;
第1位到第11位:储存指数部分, e 表示 ;
第12位到第63位:储存小数部分(即有效数字),f 表示,
符号位决定了一个数的正负,指数部分决定了数值的大小,小数部分决定了数值的精度。 IEEE 754规定,有效数字第一位默认总是1,不保存在64位浮点数之中。也就是说,有效数字总是1.xx…xx的形式,其中xx..xx的部分保存在64位浮点数之中,最长可能为52位。因此,JavaScript提供的有效数字最长为53个二进制位(64位浮点的后52位+有效数字第一位的1)。
可以这样解决精度问题:
parseFloat((数学表达式).toFixed(digits)); // toFixed() 精度参数须在 0 与20 之间
// 运行
parseFloat((1.0 - 0.9).toFixed(10)) // 结果为 0.1
parseFloat((0.3 / 0.1).toFixed(10)) // 结果为 3
parseFloat((9.7 * 100).toFixed(10)) // 结果为 970
parseFloat((2.22 + 0.1).toFixed(10)www.gcyL157.com) // 结果为 2.32
在老版本的IE浏览器(IE 6,7,8)中,toFixed()方法返回值不一定准确。所以这个方法以前很少用。以至于网上搜索出来的结果大都是下面这些方法。
还有一些其他的解决方案,简单的说需要将浮点数转换字符串,分隔成为整数部分和小数部分,小数部分再转换为整数,计算结果后,再转换为浮点数。
加法函数:
/**
** 加法函数,用来得到精确的加法结果
** 说明:javascript的加法结果会有误差,在两个浮点数相加的时候会比较明显。这个函数返回较为精确的加法结果。
** 调用:accAdd(arg1,arg2)
** 返回值:arg1加上arg2的精确结果
**/
function accAdd(arg1, arg2) {
var r1, r2, m, c;
try {
r1 = arg1.toString().split(www.michenggw.com".")[1].length;
}
catch (e) {
r1 = 0;
}
try {
r2 = arg2.toString().split(".")[1].length;
}
catch (e) {
r2 = 0;
}
c = Math.abs(r1 - r2);
m = Math.pow(10, Math.max(r1, r2));
if (c > 0) {
var cm = Math.pow(10, c);
if (r1 > r2) {
arg1 = Number(arg1.toString().replace(".", ""));
arg2 = Number(arg2.toString(www.gxgjpt1.com ).replace(".", "")) * cm;
} else {
arg1 = Number(arg1.toString().replace(".", "")) * cm;
arg2 = Number(arg2.toString().replace(".", ""));
}
} else {
arg1 = Number(arg1.toString().replace(".", ""));
arg2 = Number(arg2.toString().replace(".", ""));
}
return (arg1 + arg2) / m;
}
//给Number类型增加一个add方法,调用起来更加方便。
Number.prototype.add = function (arg) {
return accAdd(arg, this);
};
减法函数:
View Code
乘法函数:
View Code
除法函数:
View Code
JavaScript 浮点数运算的精度问题
最新推荐文章于 2023-03-24 21:03:09 发布