js浮点数运算不精确 如何解决_js中精度问题及解决方案

9e6962cf41831df5a74a14b5a3a0ab55.gif

js常见精度问题

1.浮点数精度问题 2.大数精度问题

浮点数精度问题,比如 0.1 + 0.2 !== 0.3
大数精度问题,比如 9999 9999 9999 9999 == 1000 0000 0000 0000 1
toFixed 四舍五入结果不准确,比如 1.335.toFixed(2) == 1.33

四舍五入 toFixed()方法

let a = 2.446242342;
a = a.toFixed(2); // 输出结果为 2.45
let b = 2.335;
b = b.toFixed(2); // 输出结果为 2.33

round()、floor()、ceil() 等都不能真正的四舍五入,有精度问题。

ES6 在Number对象上面,新增一个极小的常量Number.EPSILON。它表示 1 与大于 1 的最小浮点数之间的差。
Number.EPSILON实际上是 JavaScript 能够表示的最小精度。误差如果小于这个值,就可以认为已经没有意义了,即不存在误差了。

round() 可以通过以下方式来确保精度是正确的:

let c = 2.446242342;
c = Math.round((c + Number.EPSILON) * 100) / 100; // 输出结果为 2.45

let d = 2.335;
d = Math.round((d + Number.EPSILON) * 100) / 100; // 输出结果为 2.34
// 能精确表示的整数范围上限,S为1个0,E为11个0,S为53个1
Math.pow(2, 53) - 1 === Number.MAX_SAFE_INTEGER // true
// 能精确表示的整数范围下限,S为1个1,E为11个0,S为53个1
-(Math.pow(2, 53) - 1) === Number.MIN_SAFE_INTEGER // true

[MIN_SAFE_INTEGER, MAX_SAFE_INTEGER] 的整数都可以精确表示,但是超出这个范围的整数就不一定能精确表示。这样就会产生所谓的大数精度丢失问题。

解决思路

首先考虑的是如何解决浮点数运算的精度问题,有 3 种思路:

1· 考虑到每次浮点数运算的偏差非常小(其实不然),可以对结果进行指定精度的四舍五入,比如可以parseFloat(result.toFixed(12));

2. 将浮点数转为整数运算,再对结果做除法。比如0.1 + 0.2,可以转化为(1 + 2)/10。(转化后的两个整数相乘的结果有可能超过 MAX_SAFE_INTEGER)

3. 把浮点数转化为字符串,模拟实际运算的过程。

所以,最终考虑使用第三种方案,目前已经有了很多较为成熟的库,比如 bignumber.js,decimal.js,以及big.js等。
我们可以根据自己的需求来选择对应的工具。并且,这些库不仅解决了浮点数的运算精度问题,还支持了大数运算,并且修复了原生toFixed结果不准确的问题。

function toDecimal(num) {
return Math.round(num + Number.EPSILON);
}

以上方法虽然不会产生精度问题,但是它有一点小陷阱容易忽略。
toDecimal(-1.5) // 1 不是我们想要的结果

特殊精度解决方案

// 金额price(大于等于0)保留n(n一般为2)位小数,此方法不会有精度问题

function formatPrice(price, digit) {
const accuracyNum = Math.pow(10, digit);
return parseFloat(Math.round((price + Number.EPSILON) * accuracyNum) / accuracyNum).toFixed(digit);
}

将浮点数转为整数运算,运算结果附上小数点 的四则运算,可能会出现数据溢出

//加
function add(arg1,arg2){
let digits1,digits2,maxDigits;
try{digits1=arg1.toString().split(".")[1].length}catch(e){digits1=0}
try{digits2=arg2.toString().split(".")[1].length}catch(e){digits2=0}
maxDigits=Math.pow(10,Math.max(digits1,digits2))
return (arg1*maxDigits+arg2*maxDigits)/maxDigits
}

//减
function sub(arg1,arg2){
let digits1,digits2,maxDigits;
try{digits1=arg1.toString().split(".")[1].length}catch(e){digits1=0}
try{digits2=arg2.toString().split(".")[1].length}catch(e){digits2=0}
maxDigits=Math.pow(10,Math.max(digits1,digits2));
return (arg1*maxDigits-arg2*maxDigits)/maxDigits;
}

//乘
function mul(arg1,arg2) {
let digits=0,s1=arg1.toString(),s2=arg2.toString();
try{digits+=s1.split(".")[1].length}catch(e){}
try{digits+=s2.split(".")[1].length}catch(e){}
return Number(s1.replace(".",""))*Number(s2.replace(".",""))/Math.pow(10,digits);
}

//除
function div(arg1,arg2){
let int1=0,int2=0,digits1,digits2;
try{digits1=arg1.toString().split(".")[1].length}catch(e){digits1=0}
try{digits2=arg2.toString().split(".")[1].length}catch(e){digits2=0}

int1=Number(arg1.toString().replace(".",""))
int2=Number(arg2.toString().replace(".",""))
return (int1/int2)*Math.pow(10,digits2-digits1);
}

金额按照千分位格式化(不会有精度问题,不会有溢出问题)

使用bignumber.js

const x= new BigNumber('123456789.123556789'); // 注意:参数必须为字符串,接口返回参数也必须为字符串

// 格式化(小数点)
console.log('-----x.toFormat()------', x.toFormat()); // '123,456,789.123556789'
console.log('-----x.toFormat(3)------', x.toFormat(2)); // '123,456,789.124'

经典前端面试题每日更新,欢迎参与讨论,地址:

https://github.com/daily-interview/fe-interview

如果本文对你有用,可否点个在看ffe62937ee4ee184a49828492f1c5e75.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值