自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

小志的博客

随笔笔记仅供参考

  • 博客(1578)
  • 资源 (14)
  • 收藏
  • 关注

原创 AI大模型实战——如何本地化部署开源大模型ChatGLM3-6B

本文介绍了大模型选择与部署的实践指南。重点分析了ChatGLM3-6B作为开源模型的优势:62亿参数规模适中,单张3090显卡即可微调和推理,适合中小企业应用。文章详细说明了GPU资源获取方案,包括二手显卡购买、云服务租赁等。在部署环节,提供了从环境准备到模型下载、命令行和Web界面启动的完整流程,并介绍了量化部署等显存优化方案。最后解释了max_length、temperature等关键参数的调优建议。整体为开发者提供了从选型到落地的实用技术方案。

2026-01-05 21:17:37 627

原创 AI大模型实战——探索智能体世界:LangChain与RAG检索增强生成

本文介绍了AI大模型的局限性以及AI Agent(智能体)的概念与作用。大模型在数据时效性、复杂任务处理、代码生成等方面存在不足,而AI Agent作为以大模型为核心控制器的代理系统,能够弥补这些缺陷。文章重点分析了LangChain技术框架,详细阐述了其六大核心模块(模型I/O、检索、代理、链条、内存、回调)的功能与交互方式,并介绍了LCEL表达式语言的管道式编程方法。最后指出LangChain已发展为一个包含开发框架、DevOps平台、API管理工具的完整AI应用开发生态,展现了AI技术对软件开发流程的

2026-01-04 23:03:28 736

原创 AI大模型实战——学好提示工程,轻松驾驭大模型

摘要: 提示工程是优化AI大模型交互的关键技术,通过设计精准的提示(Prompt)引导模型生成高质量输出。随着提示工程师岗位的兴起(年薪可达30万美元),其重要性日益凸显。提示不同于简单提问,而是基于模型自回归训练原理,通过详细描述任务、上下文、示例、角色、格式和语气等模块(核心为任务和上下文),提升模型输出的准确性。例如,为生成Web登录代码,需明确框架、加密方式及步骤。掌握提示工程实质是提升“AI领导力”,通过高效沟通释放大模型的潜力。

2025-12-29 22:20:01 718

原创 AI大模型实战——从工程学角度看ChatGPT为什么会崛起

OpenAI 母公司是 OpenAI Inc,属于非营利性质组织,这种情况下资本无法进入,所以后来成立了一家子公司,叫 OpenAI LP,现在我们常说的 OpenAI,其实就是 OpenAI LP,这是一家纯粹的商业化公司,这家公司设置了最高 100 倍的回报上限,以此来权衡盈利和非盈利属性,也可以叫做“有限盈利”,既迎合资本家利益,也看似符合母公司非盈利组织的创建初衷。当模型完成大规模训练后,接下来就是面世了,OpenAI 的玩法很直接,直接产品化,让大家随便玩。有这么多数据了,接着就要进行预训练了。

2025-12-29 20:31:11 897

原创 AI基础入门(模型篇)——如何面对不断更新的大模型

摘要: 大模型开发中,"变"与"不变"需平衡处理。API的统一性(如OpenAI标准)和基础能力(如推理、多模态)是稳定要素,开发者应聚焦业务整合而非过度追求模型升级。架构设计可通过"LLM Router"实现模型分流(如本地处理简单任务、云端处理复杂请求),以优化成本与性能。对于"变"的部分,需关注三点:新功能创造场景(如GPT-4V的图像识别)、性能跃升(如GPT-3.5到4)、成本变化(如开源模型替代方案)。特定场景模型(

2025-12-16 22:21:35 725

原创 AI基础入门(模型微调)——创建一个属于自己的大模型

模型微调是对预训练大模型进行局部参数调整的技术,能够以较低成本实现模型定制化。相比训练全新大模型动辄数百万美元的成本,微调只需调整部分神经元连接,大大降低了计算开销。在实际应用中,微调常与RAG(检索增强生成)结合使用,先用RAG处理新数据,积累到一定量后再进行微调,既保证数据时效性又提升模型质量。 微调流程包括数据准备、模型训练、评估和使用四个步骤。数据准备是关键环节,需要足够数量且高质量的训练样本。主流工具如LLaMA Factory提供了图形化界面,支持多种数据格式和训练方法,适合初学者使用本地部署。

2025-12-15 21:52:27 772

原创 AI基础入门(开源模型)——如何在项目中使用开源模型

本文介绍了两种封装大模型的方法:使用LangChain和集中接入。LangChain通过抽象层屏蔽不同模型的差异,支持无缝切换,并提供了Hugging Face模型的集成示例。集中接入方案则将模型管理移出代码,以One-API和Ollama为例,展示了本地部署和API调用的方法。Ollama支持多种模型版本,可通过命令行或API访问,适用于私有部署和成本控制。两种方法各有优势,可根据项目需求灵活选择。

2025-12-15 20:48:31 713

原创 AI基础入门(开源模型)——如何使用Hugging Face上的模型

摘要: 本文介绍了使用本地部署的开源大模型替代GPT等第三方服务的必要性,尤其适用于注重数据安全的企业。重点介绍了Hugging Face作为AI开源社区的核心作用,并演示了通过高层接口(pipeline)和底层接口调用模型的两种方式。高层接口简化了模型调用流程,支持文本生成、翻译等多种任务;底层接口则通过Tokenizer和模型生成实现更灵活的控制。文章还提及了访问权限、镜像站配置等实践问题,为开发者提供了本地部署大模型的实用指南。

2025-12-09 23:02:10 717

原创 AI基础入门(应用开发篇)——集中接入:将大模型统一管理起来

本文介绍了大模型集中接入的必要性及实现方法。通过构建大模型代理(如One-API),可以解决多账号管理、限流控制、供应商切换等问题。集中接入后,应用只需对接标准OpenAI接口,而代理负责处理不同供应商的API差异、本地模型接入等复杂性。以One-API为例,文章演示了如何通过Docker部署代理服务,配置渠道模型、API密钥等核心功能,并展示了模型重定向等高级用法。这种架构简化了AI应用开发,将底层复杂性交由代理处理,开发者只需关注业务逻辑实现。

2025-12-06 23:21:12 767

原创 AI基础入门(应用开发篇)——缓存:节省使用大模型的成本

摘要: 本文探讨了缓存技术在大模型应用中的重要性及其实现方式。缓存能显著提升访问速度并降低成本,尤其适用于响应较慢的大模型服务。LangChain提供了统一的缓存接口,支持精确缓存(如内存缓存)和语义缓存(如基于Redis的RedisSemanticCache)。精确缓存要求输入完全匹配,而语义缓存通过自然语言理解实现相似意图的匹配。文中通过代码示例演示了两种缓存的使用,并指出LangChain当前实现中因JSON字符串噪声导致语义缓存可能误匹配的问题,需通过自定义逻辑(如FixedSemanticCach

2025-12-05 19:59:14 836

原创 AI基础入门(应用开发篇)——长期记忆:让大模型更了解你

摘要 本文探讨了大模型记忆功能的实现方案,重点介绍了长期记忆的解决方案Mem0。大模型本身无状态,记忆功能需通过提示词传递内容实现。短期记忆通过存储聊天历史实现,但受限于上下文窗口大小。长期记忆通过向量数据库存储历史对话内容,使用时进行语义检索。Mem0作为一个开源记忆层项目,采用简洁API设计,将对话内容提取为事实存入向量数据库,实现长期记忆功能。文章通过代码示例展示了如何结合LangChain使用Mem0,在对话中检索相关上下文并存储交互历史,使AI能够记住用户偏好和历史对话,实现更个性化的服务。

2025-12-03 22:58:12 735

原创 AI基础入门(应用开发篇)——用LangChain实现一个Agent

本文介绍了基于LangChain框架实现的Agent系统。通过代码示例展示了如何定义工具函数(如计算和查询水果单价),并使用@tool装饰器将其转换为Agent可调用的工具。重点解析了ReAct Agent的提示词模板设计,其中包含工具信息、思考过程和执行步骤。最后说明了如何将模型、工具和提示词组装成可执行的Agent,并通过AgentExecutor实现循环执行机制。整个系统实现了问答过程中动态调用工具并逐步推理的功能。

2025-12-03 22:26:34 1069

原创 AI基础入门(应用开发篇)——从头实现一个Agent

本文介绍如何基于ReAct模式实现一个Agent系统。ReAct模式包含思考(Thought)、行动(Action)和观察(Observation)三个阶段循环。文章首先实现了一个基础的聊天机器人,然后详细阐述了ReAct提示词的设计,包括模式描述、可用动作和示例会话。可用动作包含计算和查询水果价格两个功能,通过Python函数实现。最后通过正则表达式和字典将动作映射到具体实现,构建完整的Agent系统。该实现避免了直接使用LangChain等框架,采用底层方式帮助理解Agent的工作原理。

2025-12-01 23:39:30 1036

原创 AI基础入门(应用开发篇)——Agent:从聊天到工作

本文探讨了AI Agent(智能代理)的概念及其与大模型的结合应用。Agent是一种能够自主感知环境、做出决策并采取行动达成目标的系统,其核心在于具备灵活性的"大脑"。随着大模型的发展,其推理能力为Agent提供了理想的"大脑",催生了AutoGPT等新一代智能代理。一个完整的Agent系统通常包含规划、记忆和工具三大组件:规划负责任务分解与优化,记忆提供短期和长期信息存储,工具则用于外部交互。文章详细描述了Agent的工作流程,即通过任务分解、执行评估和循环处理来完

2025-12-01 20:14:53 1094

原创 AI基础入门(应用开发篇)——自己动手实现一个RAG应用

本文介绍了RAG(检索增强生成)技术的两个核心过程:索引和检索生成。在索引部分,通过TextLoader加载文本信息,使用RecursiveCharacterTextSplitter拆分文档,并存储到Chroma向量数据库中。检索生成部分展示了如何基于向量数据库构建RAG应用,包括相似度搜索、token计数以及对话历史管理等关键技术实现。文章还提供了完整的代码示例,展示了从文档处理到检索生成的全流程实现方案。

2025-11-30 20:54:05 926

原创 AI基础入门(应用开发篇)——RAG:让大模型知道更多东西

摘要:RAG(检索增强生成)是一种低成本且灵活的方法,用于让大模型掌握特定业务知识。其核心流程包括检索相关资料、增强提示词并生成回答。与传统数据库不同,RAG依赖向量数据库进行语义匹配,通过Embedding模型将文本转换为向量。索引过程涉及信息提取、文本拆分、向量转换和存储。尽管RAG技术快速发展,涉及混合搜索、重排序等新方向,但基于现有框架如LangChain,开发者可以较容易地实现RAG应用。

2025-11-30 18:58:12 835

原创 AI基础入门(应用开发篇)——从零实现一个角色扮演的聊天机器人

本文介绍了如何利用LangChain框架开发三种不同功能的聊天机器人。首先实现了一个基础的命令行聊天机器人,但发现其无法记住对话历史。接着通过引入RunnableWithMessageHistory和InMemoryChatMessageHistory实现了能记住上下文的聊天机器人。最后展示了如何通过提示词模板让聊天机器人扮演特定角色(如孔子),使其保持一致的对话风格。文章还解释了LangChain中Runnable接口的关键作用,以及如何通过会话ID管理不同用户的聊天历史。这些示例展示了聊天机器人从简单到

2025-11-29 20:22:29 601

原创 AI基础入门(应用开发篇)——LangChain:核心抽象

LangChain是一个AI应用开发框架,提供三个核心抽象:ChatModel负责生成输出,支持同步和流式调用;PromptTemplate分离开发者提示词和用户输入;OutputParser处理模型输出。通过LangChain表达式语言(LCEL)可将这些组件串联成链,简化大模型应用开发。文章通过代码示例展示了如何实现英译中任务,并介绍了流式响应和提示词模板的使用方法。

2025-11-29 18:45:40 908

原创 AI基础入门(应用开发篇)——LangChain:一个AI应用开发生态

摘要: LangChain是一个快速演化的开发框架,用于构建基于大语言模型的应用,其核心价值在于提供基础抽象(如模型、解析器、提示词模板等)和表达式语言(LCEL),通过组件组装成链实现功能。LangChain包含三个层次:开发框架(核心抽象与LCEL)、社区生态(各类模型、工具、提示词模板的实现)和扩展生态(如LangServe、LangSmith等工具)。开发者可根据需求选择是否使用LangChain,其丰富的示例和资源也使其成为学习大模型应用开发的重要材料。框架虽强大,但需结合实际场景评估其适用性。

2025-11-29 16:05:41 914

原创 AI基础入门(应用开发篇)——OpenAI API:LLM编程的事实标准(下)

本文介绍了大模型聊天应答的核心内容与结构。首先解释了标准HTTP应答的常见参数,包括id、object、created、model和system_fingerprint等元数据信息。重点分析了choices字段,包含index索引、finish_reason停止原因以及message消息内容,其中message可能包含常规回复或工具调用(tool_calls)。在工具调用场景下,详细说明了function调用的id、type和参数结构。此外还展示了开启logprobs选项时返回的token概率信息,包括每个

2025-11-29 14:37:37 1269

原创 AI基础入门(应用开发篇)——OpenAI API:LLM编程的事实标准(上)

本文介绍了OpenAI API的核心功能和编程接口,重点分析了聊天补全接口/v1/chat/completions的使用方法。文章首先指出学习OpenAI API的重要性,因其已成为行业标准。随后详细解析了API请求参数,将其分为核心参数(如model、messages、temperature等)、工程参数(如user、n)、工具参数(如tools、tool_choice)和模型参数(如seed、frequency_penalty等)。文章还提到API的兼容性和通用性,建议开发者掌握这些核心概念,以便快速上

2025-11-28 22:32:08 1049

原创 AI基础入门(大模型基础篇)——提示工程:更好地释放LLM的能力

本文介绍了大模型应用开发中的提示词工程(Prompt Engineering)。提示工程旨在通过优化提示词编写,提升大模型处理复杂任务的能力。文章概述了几种核心提示技术:零样本提示(Zero-Shot Prompting)适用于简单任务;少样本提示(Few-Shot Prompting)通过提供示例增强模型理解;思维链提示(Chain-of-Thought Prompting)引导模型分步推理以提高准确性;ReAct框架(Reasoning+Acting)则结合推理与外部工具调用,扩展模型能力边界。这些技术

2025-11-28 21:33:24 897

原创 AI基础入门(大模型基础篇)——提示词:怎样与大模型沟通

本文从用户视角探讨如何有效使用GPT,提出"定义任务目标-下达命令-调整结果"的三步使用法。核心在于掌握提示词公式:定义角色+背景信息+任务目标+输出要求。通过设定角色(如医生、历史学家)可获取更专业的回答;提供充分背景信息能提高回答相关性;明确任务目标和输出要求(如格式、字数)可精准控制结果。文章强调灵活运用公式,通过多次对话补充信息优化回答,并指出该方法适用于各类大模型交互。

2025-11-28 20:55:09 1007

原创 AI基础入门(大模型基础篇)——技术视角:你应该知道的LLM基础知识

本文从技术视角解析了大模型的工作原理,主要介绍了三个核心概念:Token、温度和Embedding。首先,大模型通过逐个添加Token来生成文本,Token数量直接影响上下文窗口大小和计费标准。其次,通过引入温度参数控制随机性,温度越高输出越多样化。最后,解释了字符串如何通过One-Hot编码和神经网络压缩转化为向量形式的Embedding,这是AI处理各类输入的基础。这些概念对理解大模型应用开发至关重要,Token决定处理能力,温度影响输出风格,Embedding则是信息转换的关键步骤。

2025-11-27 23:12:33 902

原创 AI基础入门(大模型基础篇)——用户视角:你应该知道的LLM基础知识

比如,当用户提问与自杀相关的问题时,GPT 不会简单地给出“建议自杀”的回答,而会尽力引导用户寻求专业的帮助和支持,避免对用户造成不良影响。例如,模型的计算能力不足,或者模型的结构不够优秀,都会对模型的回答产生一定的影响。至此,我们已经对大模型有了一个初步的了解,这些内容虽然是针对 GPT 进行讲解的,但由于技术上的通用性,其它的 LLM 也基本上可以这样理解。:人类语言是具有歧义性的。在下面的例子里,我问了 GPT 一个不恰当的问题,GPT 没有回答我怎么做,而是提醒我,这种做法是不合适的。

2025-11-27 21:20:13 876

原创 WindowServer 2012R2——window server2012 R2 无网安装.netFramework 3.5

本文详细介绍了在Windows Server 2012 R2系统中安装.NET Framework 3.5的完整步骤。首先需要下载sxs安装文件并解压备用,然后通过控制面板进入"启用或关闭Windows功能"界面。关键步骤是指定备用源路径并填写sxs文件所在目录,最终完成安装。该教程解决了安装SQL Server 2012时要求先安装.NET Framework 3.5的问题,文中配有详细的操作截图指引,适合技术人员参考使用。

2025-11-27 21:15:00 414

原创 AI基础入门(开篇词)——普通程序员如何迈进AI时代

摘要: AI时代下,程序员仍可通过工程化能力将大模型技术与实际业务结合。基于大模型的AI应用开发核心在于将部分规则判定交由模型处理,开发者需掌握提示词编写、OpenAI API和LangChain框架等技能。课程涵盖大模型基础、应用开发(如RAG和Agent)及开源模型实践,重点传授长期有效的技术逻辑(如提示工程),而非特定模型细节,帮助普通程序员快速适应AI开发需求,降低技术迭代的过时风险。

2025-11-27 20:15:00 719

原创 git——Git 代码管理模型(GitLab Flow 模型)

GitLab Flow是一种结合简洁性与严格环境控制的代码分支管理模型,适用于需要持续交付的中大型项目。其核心是"上游优先"原则,所有变更必须通过主分支(master)流转,再通过CI/CD自动同步到测试和生产环境。主要分支包括master(唯一可信代码源)、功能分支和环境分支。工作流程强调自动化测试、代码评审和部署隔离,严格禁止直接修改环境分支。该模型优点在于环境隔离严格、版本追溯性强,但要求团队具备完善的CI/CD工具链和规范流程。GitLab Flow特别适合监管严格行业或中等发布

2025-10-29 20:21:46 744

原创 git——Git 代码管理模型(GitHub Flow 模型)

摘要: GitHub Flow是一种简洁高效的Git分支管理模型,适用于小型团队或快速迭代项目。其核心是仅使用master分支和短暂的功能分支(feature branch),开发完成后通过Pull Request(PR)合并到master并立即部署。流程包括:创建功能分支、开发、提交PR、代码审查/测试、合并及部署。优点是简单高效、支持敏捷开发、减少冲突;缺点是缺乏复杂版本管理能力,依赖测试/审查机制,需完善的自动化部署。适用场景包括小型团队、持续交付项目及自动化能力强的团队。

2025-10-24 21:29:19 766

原创 git——Git 代码管理模型(GitFlow 模型)

GitFlow是一种经典的分支管理模型,适用于中大型团队协作。它包含master(稳定生产代码)、develop(核心开发分支)、feature(功能开发)、release(版本发布)和hotfix(紧急修复)五种分支类型,形成完整的开发-测试-发布流程。优点在于分工明确、降低冲突风险、保证代码稳定性;缺点是复杂度高、学习成本大,不适合小型项目或持续交付场景。该模型最适合需要阶段性发布、追求高稳定性的中大型团队项目。

2025-10-23 21:28:46 943

原创 idea官网选择具体版本的下载步骤

2025-08-25 22:36:55 1932

原创 Mysql——分库分表后id冲突解决方案(即分布式ID的生成方案)

分库分表后ID冲突问题及解决方案 摘要: 分库分表后自增ID会导致主键冲突,本文介绍了5种分布式ID生成方案: 设置自增步长:通过不同表设置不同起始值和步长避免冲突,但无法扩容; 数据库号段:维护号段表,预分配ID范围,但存在单点故障风险; UUID方式:简单易用但影响查询和插入性能; Redis生成:利用incr命令原子自增,需考虑持久化问题; 雪花算法:结合时间戳、节点ID和序列号生成唯一ID,性能优异但存在时间回拨问题。 每种方案都分析了原理、实现方式和优缺点,可根据业务场景选择合适的ID生成策略。

2025-08-18 22:46:50 1366

原创 Mysql——前模糊索引失效原因及解决方式

摘要:前模糊索引失效的解决方案 前模糊查询导致索引失效是因为B+树无法对不确定首字符进行有序检索。解决方法包括:1)建立反向索引,将字段值倒序存储,改用后模糊查询;2)限定查询时间范围缩小扫描量;3)使用索引覆盖避免回表;4)引入第三方搜索引擎。这些方案可有效提升模糊查询性能。

2025-08-18 22:10:19 538

原创 mysql——count(*)、count(1)和count(字段)谁更快?有什么区别?

本文探讨了MySQL中count()、count(1)和count(属性)的性能差异。通过示例表测试发现,count()和count(1)均统计总行数(包括NULL值),而count(属性)只统计非NULL值行数。MySQL官方文档证实count()和count(1)在功能与性能上完全一致,执行计划显示count()会被优化为count(0)。理论上count(*)略优,因无需SQL优化步骤,但实际性能差异极小。开发者可根据编码规范选择使用,无需过度关注性能差异。

2025-08-14 23:19:44 656

原创 MySql——聚簇索引(主键索引)和非聚簇索索引(非主键索引)引区别(即聚集索引和非聚集索引区别)

本文主要介绍了聚簇索引(主键索引)和非聚簇索引(非主键索引)的区别。聚簇索引将索引和数据存储在同一个B+树中,查询效率较高;而非聚簇索引需要先查询索引再回表获取数据,效率较低。在InnoDB引擎中,主键索引采用聚簇索引结构,数据和索引存储在同一个文件中;而MyISAM引擎则采用非聚簇索引结构,数据和索引分开存储,查询时需要进行回表操作。文章通过图解和存储引擎对比,详细说明了两种索引的结构特点和性能差异,为数据库索引选择提供了参考依据。

2025-08-14 22:23:58 1518

原创 MySql——binlog和redolog的区别

MySQL中的binlog和redolog虽然都记录数据修改,但二者功能不同。binlog是所有存储引擎共用的日志,记录所有操作日志,主要用于主从同步和数据恢复;redolog是InnoDB引擎特有的日志,用于事务数据恢复和BufferPool的崩溃恢复。两者不能互相替代,binlog针对磁盘数据恢复,redolog则确保事务完整性。

2025-08-14 21:39:25 361

原创 MySQL——binlog刷盘机制

MySQL的binlog日志提供三种刷盘策略,通过sync_binlog参数配置:0表示实时写入PageCache但延迟刷盘(性能最高但可能丢失数据);1表示每次事务提交都强制刷盘(最安全但性能低);2表示N次事务提交后刷盘(平衡方案)。MySQL 5.7.7前默认值为0,之后改为1。不同策略在数据安全性和性能间取得平衡,适用于不同业务场景。

2025-08-13 23:33:41 1977

原创 Mysql——如何做到Redolog崩溃后恢复的

MySQL引擎层BufferPool工作原理:执行修改语句时,InnoDB首先检查BufferPool缓存,若无则从磁盘加载数据页到BufferPool,修改后成为脏页并记录UndoLog。提交时通过RedoLog保证崩溃恢复,其顺序写入特性比直接写磁盘更高效。InnoDB提供三种刷盘策略:0(延迟1秒写)、1(实时写最安全)、2(系统缓存写),默认采用策略1确保数据不丢失。RedoLog结合BufferPool机制实现了事务持久性和高性能的平衡。

2025-08-13 22:58:17 1364

原创 MySQL——MySQL引擎层BufferPool工作过程原理

MySQL引擎层BufferPool工作过程:执行修改语句时,首先检查BufferPool中是否存在目标数据,若不存在则从磁盘加载整个数据页到BufferPool。修改数据后,BufferPool形成脏页(与磁盘数据不一致),修改前的数据存入UndoLog用于回滚。提交事务时,脏页数据同步到磁盘文件,恢复为正常页。整个过程通过BufferPool减少磁盘I/O,提高性能。

2025-08-12 22:52:04 567

原创 MySql——B树和B+树区别(innoDB引擎为什么把B+树作为默认的数据结构)

本文对比分析了B树和B+树的异同点。二者共同特征是通过有序索引实现快速数据定位,且都遵循"左小右大"的存储原则,减少磁盘IO次数。主要区别在于:B树每个节点存储键值对,适合随机读写;B+树非叶节点仅存键指针,叶节点通过链表连接,存储密度更高,特别适合范围查询和顺序访问。实际应用中,B+树因其更优的查询效率和范围查询性能,成为数据库索引的优先选择。

2025-08-12 22:19:10 584

科大讯飞语音识别java版本demo

调用科大讯飞SDK包,语音识别java版本代码示例。示例包括语音听写、语音识别、语音组合三个功能,本人只用到语音听写(即把语音转成文字)

2019-04-25

科大讯飞Msc.jar

科大讯飞SDK包中的msc.jar包,msc 语音功能 需要该jar包的引用。科大讯飞Msc.jar

2019-04-11

ojdbc(6、8、14版本jar)

ojdbc(6、8、14版本jar)

2020-12-24

轮播图代码

轮播图代码

2016-11-25

ueditor编辑器

ueditor编辑器

2016-12-26

docker+k8s.txt

一份很不错的学习k8s的视频,包括docker一部分和k8s一部分,希望有需要的人能够下载下来一份很不错的学习k8s的视频,包括docker一部分和k8s一部分,希望有需要的人能够下载下来

2019-06-19

微信小程序 实例汇总 完整项目源代码

微信小程序 实例汇总 完整项目源代码

2016-12-21

微信小程序开发工具

小程序开发工具

2016-12-22

redis-3.2.4.tar

redis数据库安装包

2016-12-22

RSS订阅例子

RSS订阅

2016-11-25

kindeditor编辑器

kindeditor编辑器

2016-12-26

dubbo-admin-2.5.3.war

dubbo-admin-2.5.3.war ,dubbo管理控制台所需的dubbo-admin-2.5.3.war

2017-10-19

apache-tomcat-7.0.57.tar.gz

java开发技术所需的 tomcat7版本的apache-tomcat-7.0.57.tar.gz包

2017-10-19

zookeeper-3.4.6.tar.gz

java技术所需的 zookeeper-3.4.6版本的注册中心tar包 。

2017-10-19

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除