数据结构与算法——希尔排序(引例、希尔增量序列、原始希尔排序、代码、时间复杂度、Hibbard增量序列、Sedgewick增量序列)

目录

引例

希尔增量序列

原始希尔排序

代码(C语言)

时间复杂度

更多增量序列

Hibbard增量序列

Sedgewick增量序列


希尔排序(by Donald Shell)

引例

给以下序列进行排序:

 先以5的间隔进行插入排序:

 再以3的间隔进行插入排序:

最后再以1为间隔做插入排序,即常规插入排序 ,得到排序完成的序列:

希尔增量序列

  • 定义增量序列D_M>D_{M-1}>...>D_1=1
  • 对每个D_k进行“D_k-间隔”排序(k=M,M-1,..,1) 

注意:D_k-间隔”有序的序列,在执行“D_{k-1}-间隔”排序后,仍然是“D_k-间隔”有序的。

原始希尔排序

D_M=\left \lfloor N/2 \right \rfloor,D_k=\left \lfloor D_{k+1}/2 \right \rfloor

代码(C语言)

希尔排序在插入排序的基础上进行改进

void Shell_Sort(ElementType A[], int N)
{
    for(D = N / 2; D > 0; D /= 2 )  //原始希尔增量序列
    {
        for(P = D; P < N; P++)   //插入排序
        {
            Tmp = A[P];
            for(i = P; i >= D && A[i-D] > Tmp; i -= D)
                A[i] = A[i-D];
            A[i] = Tmp;
        }
    }
}

时间复杂度

最坏情况:T=\Theta (N^2)

O表示上界,\Omega表示下界,\Theta即表示上界也表示下界,为正常值。)

原始希尔序列并不好用,我们举下面的例子:

可以发现,8、4、2间隔的插入排序并没有给序列成功排序,最后还是通过间隔1来完成排序的功能。

有结论:

增量元素不互质,则小增量可能根本不起作用。 

更多增量序列

Hibbard增量序列

  • D_k=2^k-1——相邻元素互质
  • 最坏情况:T=\Theta (N^{\frac{3}{2}})
  • 猜想:T_{avg}=O(N^{\frac{5}{4}})

Sedgewick增量序列

  • { 1,5,19,41,109,...}—— 9\times4^i-9\times2^i+14^i-3\times2^i+1
  • 猜想:T_{avg}=O(N^{\frac{7}{6}}),T_{worst}=O(N^{\frac{4}{3}})
void ShellSort( ElementType A[], int N )
{ /* 希尔排序 - 用Sedgewick增量序列 */
     int Si, D, P, i;
     ElementType Tmp;
     /* 这里只列出一小部分增量 */
     int Sedgewick[] = {929, 505, 209, 109, 41, 19, 5, 1, 0};
     
     for ( Si=0; Sedgewick[Si]>=N; Si++ ) 
         ; /* 初始的增量Sedgewick[Si]不能超过待排序列长度 */

     for ( D=Sedgewick[Si]; D>0; D=Sedgewick[++Si] )
         for ( P=D; P<N; P++ ) { /* 插入排序*/
             Tmp = A[P];
             for ( i=P; i>=D && A[i-D]>Tmp; i-=D )
                 A[i] = A[i-D];
             A[i] = Tmp;
         }
}

end


学习自:MOOC数据结构——陈越、何钦铭

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值