树状数组的区间修改

参考博客:https://blog.csdn.net/fsahfgsadhsakndas/article/details/52650026

树状数组的最基本的操作单点修改,以及区间求和

单点修改:

void add(int pos,int num)
{
    while(pos < MAXN)
    {
        tree[pos] += num;
        pos += pos & -pos;
    }
    return ;
}

区间求和:

int read(int pos)
{
    int sum = 0;
    while(pos > 0)
    {
        sum += tree[pos];
        pos -= pos & -pos;
    }
    return sum;
}

然后重点就在我们的区间更新以及固定区间查询的问题上了。

        我们假设函数sigma(a,i)表示的是求解a数组前i项的和,原数组:a[n],查分数组:c[n]、

        其中差分数组的定义:c[n] = a[n] - a[n-1]

        知道了差分数组的定义,那么我们就可以得到命题:a[i] = sigma(c,i);

证明:c[1] + c[2] + c[3] + c[4] +...+ c[n] = a[1] - a[0] + a[2] - a[1] + ... +a[n] - a[n-1] = a[n] - a[0];

这里a数组的0位置是不储存任何元素的,那么上面的命题就的得证。

那么我们要修改区间[l,r]的数值的话,我们只需要对差分数组c进行修改即可:c[i] += v,c[j+1] -= v;

然后我们现在说明区间求和:

   a[1] + a[2] + a[3] +... + a[n]

= c[1] + (c[1] + c[2]) + (c[1] + c[2] + c[3]) + ... + (c[1] + c[2] +c[3] +... +c[n])

= n*c[1] + (n-1)*c[2] + ... + c[n]

= n(c[1] + c[2] + ... + c[n]) - (0*c[1] + 1 * c[2] + ... + (n-1) * c[n])

我们令数组 c2[i] = (i-1) * c[i];

这样我们的求和就可已使用上面的函数sigma来求解了: = n*sigma(c,n) -sigma(c2,n)

这样区间更新就结束了,下面就是代码的实现过程了:

sigma函数:

int sigma(int a[],ll pos)
{
    ll ans = 0;
    while(pos)
    {
        ans += a[pos];
        pos -= pos&-pos;
    }
    return ans;
}

add函数:

void add(ll a[],int pos, int num)
{
    while(pos < MAXN)
    {
        a[pos] += num;
        pos += pos&-pos;
    }
    return ;
}

然后在我们更新的时候会有一些区别

区间更新:在[l,r]之间加v

add(c1,l,v);
add(c1,r+1,-v);
add(c2,l,v*(l-1));
add(c2,r+1,-v*r);

区间求和:[l,r]区间

int sum1 = (l-1)*sigma(c1,l-1) - sigma(c2,l-1);
int sum2 = r *sigma(c1,r) - sigma(c2,r);
int ans = sum2 - sum1;

整体的程序:

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <vector>
#include <set>
#define ll long long
using namespace std;
const int MAXN = 100100;
ll c1[MAXN],c2[MAXN],num[MAXN];
int n;
ll lowbit(ll x)
{
    return x & -x;
}

ll sigma(ll *a,ll pos)
{
    ll ans = 0;
    while(pos)
    {
        ans += a[pos];
        pos -= lowbit(pos);
    }
    return ans;
}

void add(ll a[],int pos, ll num)
{
    while(pos < MAXN)
    {
        a[pos] += num;
        pos += lowbit(pos);
    }
    return ;
}

int main()
{
    scanf("%d",&n);
    for(int i = 1;i <= n;i++)
    {
        scanf("%I64d",num+i);
        add(c1,i,num[i] - num[i-1]);
        add(c2,i,(i-1)*(num[i]-num[i-1]));
    }
    //首先进行区间的更新操作
    ll l,r,v;
    scanf("%I64d%I64d%I64d",&l,&r,&v);
    add(c1,l,v);add(c1,r+1,-v);
    add(c2,l,v*(l-1));add(c2,r+1,-v*r);

    //然后进行区间求和操作
    scanf("%I64d%I64d",&l,&r);
    ll sum1 = (l-1)*sigma(c1,l-1) - sigma(c2,l-1);
    ll sum2 = r *sigma(c1,r) - sigma(c2,r);
    printf("%I64d\n",sum2 - sum1);

}

        

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值