自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 资源 (13)
  • 收藏
  • 关注

原创 如何使用Midjourney

Midjourney工具,通过AI生成图片。

2023-02-11 20:37:29 5339 1

原创 SpringBoot 、MongoDB和Gradle结合链接简单Demo

SpringBoot 、MongoDB和Gradle结合链接简单Demo

2022-02-25 13:52:28 860

原创 Hyperledger Fabric 和 FISCO BCOS区别

Hyperledger Fabric FISCO BCOS 设计 继承IBM分布式体系设计 继承以太坊公链技术 框架 适用于不同领域的通用框架 通用框架、更适用于金融领域 隔离方式 通道隔离 群组隔离 隔离设计 支持多通道,单通道私有数据隔离 支持多群组,群组内数据隔离 智能合约环境 Docker环境 EVM环境 智能合约语音 Go、Java、Nodejs Solidity智能合约语言 智能合约...

2021-12-30 11:27:49 11406

When Federated Learning Meets Blockchain A.pdf

When Federated Learning Meets Blockchain: A New Distributed Learning Paradigm 关键词:联邦学习、区块链、隐私和安全 主要贡献: 1)引入一个新的FL框架:基于区块链的联邦学习(BC-FL),使用区块链取代中央服务器。 2)提供激励机制。

2022-01-07

Scalable and Communication-efficient.pdf

Scalable and Communication-efficient Decentralized Federated Edge Learning with Multi-blockchain Framework 关键词:联邦边缘学习、区块链、梯度压缩、传输效率、安全 主要贡献: 1)设计了一个分层的区块链框架,该框架由一个主区块链和多个子链,以安全、可扩展和灵活的方式管理模型更新和模型共享记录。 2)对于模型训练子链,我们设计了一个视点一致性方案,通过允许矿工协同验证安全BFEL模型更新的质量来过滤掉不可靠的模型更新。 3)提出了一种梯度压缩方案,在不影响学习精度的情况下提高BFEL的通信效率,并通过减轻推理攻击来增强隐私保护。

2022-01-07

Privacy-Preserving Blockchain-Based Federated.pdf

关键词:区块链、众包(crowdsourcing)、差分隐私、联邦学习、物联网、移动边缘计算 主要贡献: 1)提出一个分层的众包联邦学习系统来建立机器学习模型,以帮助家电商提高服务质量和优化家电功能。 2)提出了一个新的标准化技术,它比批量标准化提供了更高的测试精度,同时保留了每个参与者数据的提取特征的隐私。此外,通过利用差分隐私,防止对手利用学习模型来推断客户的敏感信息。 3)基于区块链的系统通过确保所有的模型更新可追责来防止恶意模型攻击。

2022-01-07

Privacy-Preserving Blockchain Based Federated.pdf

关键词:区块链技术、差分隐私、以太坊、加密、联邦学习、激励学习、物联网、可扩展、安全 主要贡献: 1)介绍数据隐私; 2)介绍联邦学习 3)介绍区块链、介绍BFL; 4)介绍联邦学习在IOT中的应用。

2022-01-07

Federated Learning via Blockchain and its Latency Analysis

通过区块链的联邦学习及其延迟分析

2022-01-07

Decentralized Federated Learning Framework Based On Blockchain

基于区块链的去中心化联邦学习框架

2022-01-07

BlockFLA Accountable Federated Learning.pdf

BlockFLA 问责联邦学习

2022-01-07

Blockchain-Federated-Learning and Deep Learning.pdf

关键词:COVID-19、隐私保护数据共享、深度学习、联邦学习、区块链 主要贡献: 1)介绍了一个由89名受试者组成的新数据集,其中68名受试者为确诊的COVID19患者。数据集包含属于89个受试者的34,006个CT扫描切片(图像)。 2)提出了一种区块链授权的技术,可以从不同来源协作收集数据集,同时考虑到组织的隐私问题。采用联邦学习是为了保护组织的数据隐私,并使用不太精确的局部模型来训练全局深度学习模型。 3)使用深度学习模型(VGG16、VGG19、DenseNet、AlexNet和MobileNet、ResNet、Capsule Network)从肺部ct扫描中检测新冠肺炎图像。 4)比较了最先进的本地模型(即ResNet、Capsule Network等)与联邦学习模型的比较结果清楚地表明了我们提出的方法的优越性。

2022-01-07

Blockchained On-Device Federated Learning.pdf

关键词:联邦学习、区块链、延迟分析 主要贡献: 1)用区块链网络来代替中央服务器; 2)提供验证和相应的激励机制 3)研究BlockFL端到端学习完成延迟, 通过调整块生成率来使延迟最小化

2022-01-07

Blockchain-based Federated Learning for.pdf

主要贡献: 1)提出了一种基于区块链的联邦学习框架。将联邦学习和区块链应用于重载铁路系统,以保护运营商的数据隐私和安全。 2)引入了一种基于支持向量机的智能控制模型。

2022-01-07

A blockchain-orchestrated Federated Learning.pdf

A blockchain-orchestrated Federated Learning.pdf

2022-01-07

A Blockchain-based Decentralized Federated.pdf

A Blockchain-based Decentralized Federated.pdf

2022-01-07

BAFFLE : Blockchain Based Aggregator Free Federated Learning

BAFFLE : Blockchain Based Aggregator Free Federated Learning

2022-01-07

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除