首先是最基本的二分开根号,这个比较容易理解,复杂度比起下面讲的牛顿迭代法要高,更容易理解。
下面给出代码:
#define eps 0.00001
float SqrtByDichotomy(float n)
{
if(n<0)
{
return -1.0;
}
else
{
float low,up,mid,last;
low=0,up=(n>=1?n:1);
mid=(low+up)/2;
do
{
if(mid*mid>n)
up=mid;
else
low=mid;
last=mid;
mid=(up+low)/2;
}while(fabsf(mid-last) > eps); //求浮点数x的绝对值
return mid;
}
}
牛顿迭代法
这个算法的复杂度比二分法低。
牛顿迭代法——百度百科里面讲的很清楚。
http://baike.baidu.com/view/643093.htm
设r是 的根,选取 作为r的初始近似值,过点 做曲线 的切线L,L的方程为 ,求出L与x轴交点的横坐标 ,

本文介绍了两种求平方根的算法:二分法和牛顿迭代法。二分法虽然易于理解,但复杂度较高;牛顿迭代法则具有更低的复杂度。此外,还提到了Carmack算法作为一种低复杂度但精度不足的算法。通过不断迭代,长方形的长和宽趋于相等,从而求得算术平方根的迭代公式。
最低0.47元/天 解锁文章
6039

被折叠的 条评论
为什么被折叠?



