flink程序本地运行:No ExecutorFactory found to execute the application 在idea中运行flink job程序出现如下错误: No ExecutorFactory found to execute the application
flink程序本地运行报: A JNI error has occurred和java.lang.NoClassDefFoundError 在idea中运行flink job程序出现如下错误:A JNI error has occurred和java.lang.NoClassDefFoundError
基于DataStream API 的flink程序实现TopN 背景介绍:每隔五分钟,统计过去一个小时的热门商品。数据集:https://tianchi.aliyun.com/dataset/dataDetail?dataId=60747代码:数据结构:package com.flink.topn;public class UserDataBean { public long userId; // 用户ID...
flink中使用java 8 lambda编程报错:Caused by: org.apache.flink.api.common.functions.InvalidTypesException 报错信息如下:org.apache.flink.api.common.functions.InvalidTypesException: The return type of function 'main(KeyStateDemo.java:23)' could not be determined automatically, due to type erasure. You can give...
41.DataSet API之Connectors flink 1.8从文件系统读取Flink内置了对以下文件系统的支持: Filesystem Scheme Notes Hadoop Distributed File System (HDFS) hdfs:// 支持所有HDFS版本 Amazo...
40.DataSet API之Zipping Elements flink 1.8Zipping Elements in a DataSet压缩数据集中的元素在某些算法中,可能需要为数据集元素分配惟一标识符。本文档展示了如何使用DataSetUtils实现此目的。Zip with a Dense Index带有密集索引的压缩zipWithIndex将连续标签分配给元素,接收一个数据集作为输入,并返回一个新的数据集2-tuples(u...
39.DataSet API之Iterations flink 1.8迭代次数Iterations迭代算法在数据分析的许多领域都有应用,如机器学习或图计算。这些算法能够从大数据集中提取一些有意义的特征信息。为了在大数据集上运行这些算法,需要以大规模并行方式执行迭代。Flink程序通过定义一个步进函数(step function)并将其嵌入一个特殊的迭代操作算子来实现迭代算法。这个操作算子有两种变体:Iterate和Delta It...
38.DataSet API之Fault Tolerance flink 1.8容错Fault ToleranceFlink的容错机制在出现故障时恢复程序并继续执行它们。此类故障包括机器硬件故障,网络故障,瞬态程序故障等。批处理容错(DataSet API)DataSet API中程序的容错能力通过重试失败来实现。在作业被声明为失败之前,Flink重试执行的时间可以通过执行重试参数进行配置。如果值为0,则表示禁用容错机制。若要...
37.DataSet API之Transformations flink 1.8数据集转换DataSet Transformations本文档深入研究了数据集上可用的转换。有关Flink Java API的一般介绍,请参阅编程指南Programming Guide。有关在具有密集索引的数据集中压缩元素,请参阅Zip Elements Guide。MapMap转换在DataSet的每个元素上应用用户定义的map函数。它实现了...
36.DataSet API之Overview Flink 1.8Flink DataSet API Programming GuideFlink中的DataSet程序是实现数据集转换的常规程序(例如,Filter,映射,连接,分组)。数据集最初是从某些source数据源创建的(例如,通过读取文件或从本地集合创建)。结果通过接收器sink返回,例如通过sink将数据写入(分布式)文件或标准输出(例如命令行终端)。Flink程序可以...
35.DataStream API之Experimental Features flink 1.9实验性的特性Experimental Features本节描述DataStream API中的实验特性。实验特性仍在发展中,可能是不稳定的、不完整的,或者在未来的版本中可能发生重大变化。Reinterpreting a pre-partitioned data stream as keyed stream将预分区数据流重新解释为键控流我们可以将预分区的...
34.DataStream API之Side Outputs flink 1.9除了从DataStream操作的结果中获取主数据流之外,你还可以产生任意数量额外的侧输出结果流。侧输出结果流的数据类型不需要与主数据流的类型一致,不同侧输出流的类型也可以不同。当您想要拆分数据流时,通常的做法是复制流,然后从每个流过滤出您不想拥有的数据,但是如果使用side output操作可以很好的解决这种问题。在使用侧输出时,首先用户需要定义一个OutputTa...
33.DataStream API之Connectors (Kafka) flink 1.9此连接器可访问由Apache Kafka提供的事件流。Flink提供特殊的Kafka连接器,用于从/到Kafka topics中读取和写入数据。Flink Kafka Consumer会把kafka消费者的offset等信息保存到Flink的检查点checkpoint中,以提供一次性exactly-once处理语义。为了实现一次性语义,Flink并不完全依靠Kafka...
32.DataStream API之Connectors(Fault Tolerance Guarantees) flink 1.9Flink的容错机制能够确保在出现故障时,恢复程序并继续执行它们。这些故障包括机器硬件故障、网络故障、短暂的程序故障等。只有当source源参与了快照机制时,Flink才能确保仅一次exactly-once状态更新到用户定义的状态。下表列出了flink与绑定的连接器的状态更新保证模式。 Source Guarantees ...
31.DataStream API(Connectors)之Overview flink 1.9flink内置的source和sink(Predefined Sources and Sinks)在Flink中内置了一些常用的数据源source和sink算子。内置的数据源source(predefined data sources)包括从文件files、目录directories和套接字 sockets中读取数据,以及从集合collections和迭代器iterat...
30.DataStream API之Operators(Async IO) flink 1.9本页阐述了使用Flink的API来进行外部数据存储的异步I/O,对于不熟悉异步或者事件驱动编程的用户,学习一篇关于Future和事件驱动编程可能会很有用。注意:关于异步I/O的详细设计和实现可以在异步I/O设计和实现这篇文章找到(FLIP-12: Asynchronous I/O Design and Implementation)。The need for A...
29.DataStream API之Operators(Process Function) flink 1.9The ProcessFunctionProcessFunction是一个低级的流处理操作,可以访问所有(非循环)流应用程序的基本组件:Events(流元素) state (容错, 一致性,只在KeyedStream上) timers (事件时间和处理时间,只在KeyedStream上)可以将ProcessFunction看做是具备访问keyed状态和定时器的F...
28.DataStream API之Operators(Joining) flink 1.8Window Joinwindow join连接两个流的元素,它们共享一个公共key并位于同一个窗口中。可以使用窗口分配器window assigner定义这些窗口,并对来自这两个流的元素求值。然后,将来自两边的元素传递给用户定义的JoinFunction或FlatJoinFunction,用户可以在其中发出满足join条件的结果。stream.join(...