描述
小A和小B决定利用假期外出旅行,他们将想去的城市从1到N编号,且编号较小的城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市i 的海拔高度为Hi,城市i 和城市j 之间的距离d[i,j]恰好是这两个城市海拔高度之差的绝对值,即d[i,j] = |Hi - Hj|。
旅行过程中,小A和小B轮流开车,第一天小A开车,之后每天轮换一次。他们计划选择一个城市S作为起点,一直向东行驶,并且最多行驶X公里就结束旅行。小A和小B的驾驶风格不同,小B总是沿着前进方向选择一个最近的城市作为目的地,而小A总是沿着前进方向选择第二近的城市作为目的地(注意:本题中如果当前城市到两个城市的距离相同,则认为离海拔低的那个城市更近)。如果其中任何一人无法按照自己的原则选择目的城市,或者到达目的地会使行驶的总距离超出X公里,他们就会结束旅行。
在启程之前,小A想知道两个问题:
1.对于一个给定的X=X0,从哪一个城市出发,小A开车行驶的路程总数与小B行驶的路程总数的比值最小(如果小B的行驶路程为0,此时的比值可视为无穷大,且两个无穷大视为相等)。如果从多个城市出发,小A开车行驶的路程总数与小B行驶的路程总数的比值都最小,则输出海拔最高的那个城市。
2. 对任意给定的X=Xi 和出发城市Si,小A开车行驶的路程总数以及小B行驶的路程总数。
格式
输入格式
第一行包含一个整数N,表示城市的数目。
第二行有N个整数,每两个整数之间用一个空格隔开,依次表示城市1到城市N的海拔高度,即H1,H2,……,Hn,且每个Hi 都是不同的。
第三行包含一个整数X0。
第四行为一个整数M,表示给定M组Si和Xi。
接下来的M行,每行包含2个整数Si 和Xi,表示从城市Si 出发,最多行驶Xi 公里。
输出格式
输出共M+1行。
第一行包含一个整数S0,表示对于给定的X0,从编号为S0的城市出发,小A开车行驶
的路程总数与小B行驶的路程总数的比值最小。
接下来的M行,每行包含2个整数,之间用一个空格隔开,依次表示在给定的Si 和Xi 下小A行驶的里程总数和小B行驶的里程总数。
样例1
样例输入
4 2 3 1 4 3 4 1 3 2 3 3 3 4 3
样例输出
1 1 1 2 0 0 0 0 0
样例2
样例输入
10 4 5 6 1 2 3 7 8 9 10 7 10 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 7 10 7
样例输出
2 3 2 2 4 2 1 2 4 5 1 5 1 2 1 2 0 0 0 0 0
限制
每个测试点1s
提示
对于30%的数据,有1≤N≤20,1≤M≤20;
对于40%的数据,有1≤N≤100,1≤M≤100;
对于50%的数据,有1≤N≤100,1≤M≤1,000;
对于70%的数据,有1≤N≤1,000,1≤M≤10,000;
对于100%的数据,有1≤N≤100,000,1≤M≤10,000,-1,000,000,000≤Hi≤1,000,000,000,0≤X0≤1,000,000,000,1≤Si≤N,0≤Xi≤1,000,000,000,数据保证Hi 互不相同。
来源
Noip2012提高组复赛Day1T3
这个题 想到了模拟。。。。
T3居然是模拟。。。
其实70分感觉非常简单
首先预处理出每个点向后的最短 次短的目的地和距离
然后模拟一下啦
。。。。。。。。
另外比值那个东西要开到19亿才能70
一开始拙计开9亿999 只有65 还不错。。。
不用long long也可以70 = =
贴代码吧
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int lim=1011;
const int inf=1999999999;
struct side{int x,y,h,w;}s[lim*lim];
struct self{int first,nxt,fw,nw;}g[lim];
int m,casenum,n,a,b,c,h[lim];
int x,y,l,r,ans,ansh;
double bizhi=0;
inline int Abs(int i){return i<0?-i:i;}
int cmp(side a1,side a2){return a1.w==a2.w?a1.h<a2.h:a1.w<a2.w;}
void yuchuli()
{
int a,b,c;
for(a=1;a<=m;a++)
for(b=a+1;b<=m;b++)
{
n++;
s[n].x=a;
s[n].y=b;
s[n].h=h[b];
s[n].w=Abs(h[a]-h[b]);
}
sort(s+1,s+n+1,cmp);
for(a=1;a<=n;a++)
{
int u=s[a].x;
if(g[u].fw==0){g[u].first=s[a].y;g[u].fw=s[a].w;}
else if(g[u].nw==0){g[u].nxt=s[a].y;g[u].nw=s[a].w;}
//else if(g[u].fw>s[a].w)
}
}
void work(int from,int dis,int now)
{
//cout<<"work("<<from<<","<<dis<<","<<now<<")"<<endl;
if(now==1)
{
if(dis<g[from].nw)return;
if(g[from].nxt==0)return;
l+=g[from].nw;
work(g[from].nxt,dis-g[from].nw,2);
}
else
{
if(dis<g[from].fw)return;
if(g[from].first==0)return;
r+=g[from].fw;
work(g[from].first,dis-g[from].fw,1);
}
}
int main()
{
scanf("%d",&m);
for(a=1;a<=m;a++)scanf("%d",&h[a]);
yuchuli();
//for(a=1;a<=n;a++)cout<<s[a].x<<" "<<s[a].y<<" "<<s[a].h<<" "<<s[a].w<<endl;
//for(a=1;a<=m;a++)cout<<"g["<<a<<"]="<<g[a].first<<" "<<g[a].fw<<" "<<g[a].nxt<<" "<<g[a].nw<<endl;
scanf("%d",&y);
bizhi=inf;
for(a=1;a<=m;a++)
{
l=r=0;
work(a,y,1); //From a Person 1 Length Y
if(r==0&&h[a]>ansh&&bizhi>inf-1)
{
ansh=h[a];
ans=a;
}
if(r!=0&&(double)l/r<bizhi)
{
ansh=h[a];
ans=a;
bizhi=(double)l/r;
}
//cout<<"a="<<a<<" ans="<<ans<<" bizhi="<<bizhi<<" l="<<l<<" r="<<r<<endl;
}
printf("%d\n",ans);
scanf("%d",&casenum);
while(casenum)
{
casenum--;
scanf("%d%d",&x,&y);
l=r=0;
work(x,y,1);
printf("%d %d\n",l,r);
}
return 0;
}
AC做法
如果有时间的话 再研究下
NOIP RP++