更新版:全国、各省、市和县基础教育水平数据(2000-2020年)

数据来源:国家统计局

时间跨度:2000-2020年

区域范围:全国范围内各区县

数据字段:

指标名称、行政区划代码、年份、地区名称、所属城市、所属省份、行政区域土地面积(平方公里)、普通小学学校数(个)、普通中学学校数(个)、普通小学专任教师数(人)、普通中学专任教师数(人)、普通小学在校生数(人)、普通中学在校学生数(人)、中等职业教育学校在校学生数(人) 

数据图例(部分):

行政区划代码年份地区名称所属城市所属省份行政区域土地面积(平方公里)普通小学学校数(个)普通中学学校数(个)普通小学专任教师数(人)普通中学专任教师数(人)普通小学在校生数(人)普通中学在校学生数(人)中等职业教育学校在校学生数(人)
1101152000大兴区北京市103017348350026005139441316
1101152001大兴区北京市103015150319030364444837055
1101152002大兴区北京市103014231243859943715
1101152003大兴区北京市103013150280032713436542410
1101152004大兴区北京市103012451287934153238839492
1101152005大兴区北京市103611147295834793112434242
1101152006大兴区北京市103610740302134602955930635
1101152007大兴区北京市10369939306334264159732402
1101152008大兴区北京市103610038308133864123430501
1101152009大兴区北京市10369438304533584043229331
1101152010大兴区北京市10369238307932924008728670
1101152011大兴区北京市10368841300336834067826745
1101152012大兴区北京市10368841301237444241827462
1101152013大兴区北京市1036964334053832560302854710164
1101152014大兴区北京市103699433410387956199271957706
1101152015大兴区北京市103698443512390459270252226770
1101152016大兴区北京市103697443609403660850231466628
1101152017大兴区北京市103696453632411260069227486293
1101152018大兴区北京市10368943330846236262922964
1101152019大兴区北京市10368345336347906574724178
1101152020大兴区北京市10368345349749076966026211

参考文献:

[1]刘华军,石印,郭立祥,乔列成.新时代的中国能源革命:历程、成就与展望[J].管理世界,2022,38(07):6-24.DOI:10.19744/j.cnki.11-1235/f.2022.0098.

[2] 张珩,程名望,罗剑朝.农村信用社双重绩效的空间格局、地区差异与分布动态研究[J].数量经济技术经济研究,2020,37(07):175-192

[3] 何静,汪侠,刘丹丽,孙鑫,段志勇.国家级贫困县旅游发展与多维贫困的脱钩关系研究——以西南地区为例[J].地理研究,2019,38(05):1189-1207.

 downloadhttps://download.csdn.net/download/li514006030/87535948

内容概要:本文档详细介绍了如何在MATLAB环境下实现CNN-GRU(卷积门控循环单元)混合模型的多输入单输出回归预测。项目旨在通过融合CNN的局部特征提取能力和GRU的时序依赖捕捉能力,解决传统序列模型在处理非线性、高维、多输入特征数据时的局限性。文档涵盖了项目背景、目标、挑战及其解决方案,强调了模型的轻量化、高效性和可视化全流程追踪等特点。此外,还提供了具体的应用领域,如智能电网负荷预测、金融时间序列建模等,并附有详细的代码示例,包括数据加载与预处理、网络结构定义、训练选项设置、模型训练与预测以及结果可视化等步骤。; 适合人群:对深度学习有一定了解,特别是对时间序列预测感兴趣的科研人员或工程师。; 使用场景及目标:①需要处理多输入单输出的非线性回归预测任务;②希望在MATLAB平台上快速实现并优化深度学习模型;③寻求一种高效、轻量且具有良好泛化能力的预测模型应用于实际场景中,如智能电网、金融分析、交通流量预测等领域。; 阅读建议:由于文档内容涉及较多的技术细节和代码实现,建议读者先熟悉CNN和GRU的基本概念,同时掌握MATLAB的基础操作。在阅读过程中,可以结合提供的代码示例进行实践操作,以便更好地理解和掌握CNN-GRU混合模型的构建与应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

samFuB

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值