全网最全-Stata实证代码命令大汇总(2024版)

本文详细介绍了如何使用Stata进行数据导入、管理、处理、描述性统计、相关性分析、实证模型建立(包括内生性解决和收敛性分析)、检验方法以及结果导出。涵盖了从基础操作到高级分析的全过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据简介:Stata是一种功能强大、易于使用的统计分析软件,可用于数据管理、统计分析、图形分析、数据输出和编程自动化等任务,在实证研究中具有广泛的应用。
数据来源:自主整理


数据展示

数据导入和管理

数据的处理

描述性统计

相关性分析

实证模型

内生性解决

收敛性分析

检验分析

t检验、z检验、卡方检验以及F检验

空间计量模型相关命令

结果导出

实证Stata代码命令汇总

(一) 数据导入和管理

1.数据导入

2.数据导出

(二) 数据的处理

1.生成新变量

2.格式转换

3.缺失数据

4.异常数据

5.重命名变量

6.编码分类变量

7.设定面板数据

8.数据合并

9.数据追加

10.国泰安原始数据处理

11.CFPS原始数据处理

12.CHFS原始数据处理

13.字符串截取

14.正则表达提取

(三) 描述性统计

1.基本统计

2.变量的详细统计

3.变量的频率表

4.变量间的相关性

5.回归分析及其描述性统计

6.简单统计

(四) 相关性分析

1.绘制直方图

2.绘制散点图

3.矩阵散点图

4.相关图

5.回归拟合图

6.相关系数

7.相关系数矩阵

(五) 实证模型

1.单变量分析

2.OLS回归

3.分位数回归

4.泊松回归

5.空间Probit模型

6.空间Logit模型

7.空间Tobit模型

8.灰色关联分析法

9.熵值法

10.DEA数据包络分析法(数量分析方法)

11.向量自回归模型(VAR)

12.门槛模型

13.断点回归模型

14.全要素生产率估计

15.合成控制法(SCM)

16.安慰剂检验

(六) 内生性解决

1.工具变量法(IV估计)

2.固定效应模型

3.随机效应模型

4.系统GMM模型

5.DID模型

6.PSM模型

7.PSM-DID模型

8.滞后期模型

(七) 收敛性分析

1.σ收敛

2.β收敛

(八) 检验分析

1.豪斯曼检验

2.Heckman两阶段检验

3.调节效应检验

4.中介效应检验

(九) t检验、z检验、卡方检验以及F检验

1.t检验

2.z检验

3.卡方检验

4.F检验

(十) 空间计量模型相关命令

1.空间相关性检验(Moran检验)

2.LM检验

3.Hausman检验(固定效应与随机效应检验选择检验)

4.检验地区固定效应、时间固定效应以及双固定效应,三种效应哪个最适合本文的研究

5.LR 检验(用来检验SDM模型能否退化为SEM、SAR模型)

6.WALD检验(也是用来检验模型的适配性)

7.SDM模型回归(空间杜宾模型)

8.SAR模型回归(空间滞后模型)

9.SEM模型回归(空间误差模型)

(十一) 结果导出

1.导出描述性统计

2.导出相关系数

3.导出回归结果

命令样例及目录:

图1.png

图2.png

图3.png

下载链接:https://download.csdn.net/download/li514006030/88655339

### 关于Stata中PSM-DDD方法的实证分析 在进行倾向得分匹配-三重差分(PSM-DDD)分析时,通常涉及多个步骤来确保估计的有效性和准确性。这些步骤包括数据准备、模型设定以及结果解释。 #### 数据准备工作 为了执行PSM-DDD,在开始之前需准备好所需的数据集并清理任何缺失值或异常情况: ```stata * 加载示例数据集 use "example_data.dta", clear * 处理缺失值和异常值 drop if missing(treatment, outcome, covariates) * 创建交互项和其他衍生变量 gen treated_post = treatment * post_treatment_period ``` #### 倾向得分计算与匹配过程 接下来,通过逻辑回归或其他适当的方法估算每个观测单位接受处理的概率——即所谓的“倾向得分”。之后利用此分数来进行样本间的配对工作: ```stata * 计算倾向得分 logit treatment covariate1 covariate2 ..., nolog predict pscore, xb * 使用psmatch2命令实现一对一最近邻匹配 ssc install psmatch2 // 如果尚未安装该包则先安装它 psmatch2 treatment, out(outcome) pscore(pscore) common caliper(.05) ``` 此处`caliper()`参数指定了卡尺宽度用于控制匹配精度;而`common`选项表示只保留共同支持区域内的观察对象[^1]。 #### 应用DDD框架评估政策效应 完成上述两步后就可以正式进入核心部分—构建双重/三重回归方程以分离出净影响效果了: ```stata * 构建基础回归模型 (未加权) regress outcome i.treated##i.post##i.group covariates, robust cluster(cluster_variable) * 对已匹配样本重新赋予权重再做一次回归 (加权) pstest _all, both pweights gen wgt=exp(_b[_cons]+_b[treatment]*treatment+_b[post]*post+_b[group]*group+_b[treated_post]*treated_post) regress outcome [pw=wgt], vce(cluster cluster_variable) ``` 这里的关键在于引入虚拟变量及其交叉积作为自变量,并考虑加入协变量调整潜在混杂因素的影响。同时采用稳健标准误(`robust`)及聚类校正(`cluster()`)提高统计检验力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

samFuB

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值