链接:登录—专业IT笔试面试备考平台_牛客网
来源:牛客网
题目描述
白兔学会了分身术。
一开始有一只白兔,接下来会进行k轮操作,每一轮中每一只白兔都会变成p只白兔。
要求k轮后白兔的总数恰好为n。
要求找到两个正整数p,k,最大化p+k
输入描述:
输入一个正整数n(2<=n<=1e18(10的18次方))
输出描述:
输出一个整数,p+k的最大值
示例1
输入
复制2
2
输出
复制3
3
说明
p=2,k=1
分析:通过列关系式来判断函数增长快慢
白兔最开始是一只,过一轮是p只,过两轮是p*p只,不难得出k轮后是p^k只(p的k次方只)
要求k轮后白兔的总数恰好为n,因此n = p^k -->变形得k = logp(n)(以p为底数,n为真数的对数函数)
要求找到两个正整数p,k,最大化p+k,可设f(x) = p+k,再代入上面蓝色的式子得到最终的关系式:f(x) = p+logp(n),其中logp(n)就是k
接下来要探讨的就是怎么让f(x)的值尽量大,其实道理很简单,只要让p尽量大就行,对于logp(n)=k来说,p增大时,对数值会减小也就是k会减小,但它减小的幅度是不如p增大的幅度的!
也就是说:在f(x)中,当p增大时,正比例函数p增大的收益比对数函数logp(n)减小的收益更大,因此只管让p尽量大,k尽量小就行了,因此k直接取1轮,过一轮后白兔总数为n = p
那么p+k的最大值就是n+1
完整代码
#include<stdio.h>
#include<math.h>
int main()
{
long long int n;//务必关心题设给出的n的范围,普通整型int是放不下的!
scanf("%lld", &n);
printf("%lld",n+1);
return 0;
}