@decorator可以动态实现函数功能的增加,但是,经过@decorator“改造”后的函数,和原函数相比,除了功能多一点外,有没有其
它不同的地方?
(1)、在没有decorator的情况下,打印函数名
代码:
def f1(x):
pass
print f1.__name__
输出:
(2)、有decorator的情况下,再打印函数名
代码:
def log(f):
def wrapper(*args, **kw):
print 'call...'
return f(*args, **kw)
return wrapper
@log
def f2(x):
pass
print f2.__name__
输出:
发现什么,哎函数名改变了,这不是我们希望看到的。
由于decorator返回的新函数函数名已经不是'f2',而是@log内部定义的'wrapper'。这对于那些依赖函数名的代码就会失效。
decorator还改变了函数的__doc__等其它属性。
(3)、decorator的改造
如果要让调用者看不出一个函数经过了@decorator的“改造”,就需要把原函数的一些属性复制到新函数中。
代码:
def log(f):
def wrapper(*args, **kw):
print 'call...'
return f(*args, **kw)
wrapper.__name__ = f.__name__
wrapper.__doc__ = f.__doc__
return wrapper
@log
def f2(x):
pass
print f2.__name__
输出:
这样写decorator很不方便,因为我们也很难把原函数的所有必要属性都一个一个复制到新函数上,所以Python内置的functools可
以用来自动化完成这个“复制”的任务:
代码:
import functools
def log(f):
@functools.wraps(f)
def wrapper(*args, **kw):
print 'call...'
return f(*args, **kw)
return wrapper
@log
def f2(x):
pass
print f2.__name__
输出:
装饰器基本上告一段落了,以后有用到其他的深入再来学习!