java解决旅行商问题(退火算法demo)

java使用退火算法处理旅行商问题demo

以下是一个简单的 Java 退火算法的示例,用于解决旅行商问题(TSP):

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Random;

public class SimulatedAnnealingTSP {

    static class City {
        int x, y;

        public City(int x, int y) {
            this.x = x;
            this.y = y;
        }

        public double distanceTo(City other) {
            int dx = x - other.x;
            int dy = y - other.y;
            return Math.sqrt(dx * dx + dy * dy);
        }
    }

    // 计算路径的总距离
    static double totalDistance(List<Integer> path, List<City> cities) {
        double dist = 0;
        for (int i = 0; i < path.size() - 1; i++) {
            int cityIndex1 = path.get(i);
            int cityIndex2 = path.get(i + 1);
            City city1 = cities.get(cityIndex1);
            City city2 = cities.get(cityIndex2);
            dist += city1.distanceTo(city2);
        }
        return dist;
    }

    // 退火算法函数
    static List<Integer> simulatedAnnealing(List<City> cities, double temperature, double coolingRate) {
        List<Integer> currentPath = new ArrayList<>();
        for (int i = 0; i < cities.size(); i++) {
            currentPath.add(i);
        }
        List<Integer> bestPath = new ArrayList<>(currentPath);
        double currentDistance = totalDistance(currentPath, cities);
        double bestDistance = currentDistance;

        Random random = new Random();
        while (temperature > 1) {
            int index1 = random.nextInt(cities.size());
            int index2 = random.nextInt(cities.size());
            swap(currentPath, index1, index2);
            double newDistance = totalDistance(currentPath, cities);
            double delta = newDistance - currentDistance;
            if (delta < 0 || Math.exp(-delta / temperature) > random.nextDouble()) {
                currentDistance = newDistance;
                if (currentDistance < bestDistance) {
                    bestDistance = currentDistance;
                    bestPath = new ArrayList<>(currentPath);
                }
            } else {
                // 恢复交换之前的路径
                swap(currentPath, index1, index2);
            }
            temperature *= coolingRate;
        }
        return bestPath;
    }

    // 交换列表中的两个元素
    static void swap(List<Integer> list, int i, int j) {
        int temp = list.get(i);
        list.set(i, list.get(j));
        list.set(j, temp);
    }

    public static void main(String[] args) {
        List<City> cities = Arrays.asList(
                new City(0, 0),
                new City(1, 2),
                new City(3, 1),
                new City(5, 2),
                new City(6, 4)
        );

        double initialTemperature = 10000;
        double coolingRate = 0.999;

        List<Integer> bestPath = simulatedAnnealing(cities, initialTemperature, coolingRate);
        System.out.println("最优路径: " + bestPath);
        System.out.println("最优距离: " + totalDistance(bestPath, cities));
    }
}

在这个示例中,我们定义了 City 类来表示城市,并实现了 totalDistance 方法来计算路径的总距离。然后,我们实现了 simulatedAnnealing 方法来执行退火算法。在主函数中,我们给出了一个简单的城市列表,并调用 simulatedAnnealing 方法来找到最优路径。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值