机器学习-决策树算法
概念:是一种树形结构,本质是一颗由多个判断节点组成的树 其中每个内部节点表示一个属性上的判断, 每个分支代表一个判断结果的输出, 最后每个叶节点代表一种分类结果。通过分析可知:决策树是非参数学习算法 决策树可以解决分类问题 决策树天然可以解决多分类问题 决策树可以解决回归问题:落在叶子节点(对应图中的A、B、C三点)的数据的平均值作为回归的结果 决策树可以应用于信用卡评级的案例中,生成相应的分类规则。1、熵 定义 熵在信息论中代表随机变量不确定度的度量。 熵越大,数据
原创
2021-09-12 20:46:25 ·
2996 阅读 ·
1 评论