Image classification practise

Build the custom_train_dataset

The first step is to:build image classification dataset, partition training set and test set,collect image,download example data set,delete more unuseful file,do image size statics,proportional distribution,take_photos distribution,all kinds of image data.

Install config environment

one is to build config on local environment.and the other is to use cloud environment. In my personal view,it depends on what you focus on more.For me,I focus on how to use pytorch not how to install it.
The most convinent way is to use GPU cloud platform.

Collect image

  1. Use tech of spyder to collect image.
    Don’t be fear how to use it.Just imitate other’s guy code. that’s ok!
    Remember take prefessional guy’s thing for your temperature use.

  1. mark image classification dataset
    First:image dataset should constains as many as possible situatiions.
  2. delete useless image directory and file.

Demo

1.use wget to download dataset directly.
2.do statics image size and distribution.

Do trainning set and test set classification.

This is important and difficulty point.
Make the image in directory visiable.
Do statics of various kinds of image classification dataset.

Models for train image recognize ways

1.No Code :Platform: paddle ModelArts
2.Code: package:pytorch tensorflow

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值