动态规划解决硬币组合问题


在编程中,动态规划是一种常见的算法技术,用于解决各种优化问题,其中之一就是硬币组合问题。这个问题是指给定一组硬币面额,以及一个目标金额,求出组合成目标金额的方法数。

问题描述

假设有 m 种不同面额的硬币,分别为 v[1], v[2], ..., v[m],以及一个目标金额 n。现在要计算组合成目标金额 n 的方法数,假设每种硬币可以使用无限次。

动态规划解决方案

我们可以使用动态规划来解决这个问题。定义一个二维数组 dp[i][j],其中 dp[i][j] 表示使用前 i 种硬币组成金额 j 的方法数。那么状态转移方程可以定义为:

#     f(i, m) 表示前 i 种货币构成 m 元的方法数

f(i, m)=f(i-1, m)+f(i-1, m-v[i])+f(i-1, m-2*v[i])+f(i-1, m-3*v[i])...

f(i-1, m-v[i])+f(i-1,m-2*v[i])+f(i-1, m-3*v[i])+..... = f(i, m-v[i])

最终状态转移方程为:f(i, m)=f(i-1, m)+f(i, m-v[i])

C++代码

#include <iostream>
using namespace std;

const int V = 26, N=10001;
int v[V];
long long dp[V][N];

int main()
{
    int m, n;
    cin>>m>>n;
    for (int i = 1; i <= m; i++)
    {
        c
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值