在编程中,动态规划是一种常见的算法技术,用于解决各种优化问题,其中之一就是硬币组合问题。这个问题是指给定一组硬币面额,以及一个目标金额,求出组合成目标金额的方法数。
问题描述
假设有 m 种不同面额的硬币,分别为 v[1], v[2], ..., v[m],以及一个目标金额 n。现在要计算组合成目标金额 n 的方法数,假设每种硬币可以使用无限次。
动态规划解决方案
我们可以使用动态规划来解决这个问题。定义一个二维数组 dp[i][j],其中 dp[i][j] 表示使用前 i 种硬币组成金额 j 的方法数。那么状态转移方程可以定义为:
# f(i, m) 表示前 i 种货币构成 m 元的方法数
f(i, m)=f(i-1, m)+f(i-1, m-v[i])+f(i-1, m-2*v[i])+f(i-1, m-3*v[i])...
又f(i-1, m-v[i])+f(i-1,m-2*v[i])+f(i-1, m-3*v[i])+..... = f(i, m-v[i])
最终状态转移方程为:f(i, m)=f(i-1, m)+f(i, m-v[i])
C++代码
#include <iostream>
using namespace std;
const int V = 26, N=10001;
int v[V];
long long dp[V][N];
int main()
{
int m, n;
cin>>m>>n;
for (int i = 1; i <= m; i++)
{
c