题目链接:
https://leetcode-cn.com/problems/house-robber-iii/
难度:中等
337. 打家劫舍 III
在上次打劫完一条街道之后和一圈房屋后,小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为“根”。
除了“根”之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。
如果两个直接相连的房子在同一天晚上被打劫,房屋将自动报警。
计算在不触动警报的情况下,小偷一晚能够盗取的最高金额。
示例 1:
输入: [3,2,3,null,3,null,1]
3
/ \
2 3
\ \
3 1
输出: 7
解释: 小偷一晚能够盗取的最高金额 = 3 + 3 + 1 = 7.
示例 2:
输入: [3,4,5,1,3,null,1]
3
/ \
4 5
/ \ \
1 3 1
输出: 9
解释: 小偷一晚能够盗取的最高金额 = 4 + 5 = 9.
中等难度的题一点思路都没有 我死了 哎。。。
打死我都没想到着会用动态规划?! 日
f(o) 包括节点o情况下的最大值
g(o) 不包括节点o情况下的最大值
对于节点 r:
- 节点 r 的最大值是 max( f( r ) , g( r ) )
- f ( r )= r->val+g(r->right)+g(r->left)
- g( r )= max(g(r->right),f(r->right)) + max(g(r->left)+f(r->left) )
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
unordered_map <TreeNode*, int> f, g;
void dfs(TreeNode* r){
if(r==nullptr){
return;
}
dfs(r->right);
dfs(r->left);
f[r]=r->val+g[r->right]+g[r->left];
g[r]=max(f[r->right],g[r->right])+max(f[r->left],g[r->left]);
}
int rob(TreeNode* root) {
dfs(root);
return max(f[root],g[root]);
}
};
还有优化方案 思路没变 优化的知识空间 (官方厉害。。)
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
struct newNode {
int sel;
int notSel;
};
class Solution {
public:
newNode dfs(TreeNode* r){
if(r==nullptr){
return {0,0};
}
newNode right = dfs(r->right);
newNode left = dfs(r->left);
int sel=r->val+right.notSel+left.notSel;
int notSel=max(right.sel,right.notSel)+max(left.sel,left.notSel);
return {sel, notSel};
}
int rob(TreeNode* root) {
newNode node=dfs(root);
return max(node.sel,node.notSel);
}
};