- 博客(5)
- 资源 (2)
- 收藏
- 关注
原创 深度学习之过拟合、欠拟合及其解决方案
文章目录模型选择、过拟合和欠拟合训练误差和泛化误差模型选择验证数据集K折交叉验证过拟合和欠拟合模型复杂度训练数据集大小权重衰减方法L2 范数正则化(regularization)丢弃法总结模型选择、过拟合和欠拟合训练误差和泛化误差在解释上述现象之前,我们需要区分训练误差(training error)和泛化误差(generalization error)。通俗来讲,前者指模型在训练数据集上表...
2020-02-19 21:27:09 2573
原创 深度学习之文本预处理
文章目录问题的引入读入文本分词建立字典,将每个词映射到一个唯一的索引将词转为索引将索引转为词用现有的工具分词问题的引入我们可以将文本看成是按时间顺序产生的序列,一篇文章可以看作是字符或单词的序列,本节将介绍文本数据的常见预处理步骤,预处理通常包括四个步骤:读入文本分词建立字典,将每个词映射到一个唯一的索引(index)将文本从词的序列转换为索引的序列,方便输入模型读入文本imp...
2020-02-14 20:34:09 796
原创 深度学习之多层感知机
文章目录基础知识表达公式激活函数ReLU函数Sigmoid函数tanh函数激活函数的选择多层感知机多层感知机的pytorch实现导入必要的包获取数据集初始化模型和各个参数定义损失函数定义优化函数训练基础知识单层感知机只能表示线性空间,深度学习主要关注多层模型。多层感知机在单层神经网络的基础上引入一个或多个隐藏层(hidden layer)。隐藏层位于输入层和输出层之间。一个多层感知机神经网络如...
2020-02-14 19:55:01 3310
原创 深度学习之softmax多元逻辑回归
文章目录问题的提出softmax运算符在运用softmax运算符是的注意事项交叉熵损失函数使用Pytorch实现softmax回归模型导入必要的包初始化参数的获取数据定义网络模型初始化模型参数定义损失函数定义优化函数训练问题的提出在机器学习中,根据预测结果是连续值还是离散值可以将模型分为回归模型和分类模型。既然分类问题需要得到离散的预测输出,一个简单的办法是将输出值oio_ioi当作预测类别...
2020-02-14 14:35:23 782
原创 深度学习之线性回归
文章目录线性回归的基本要素模型数据集损失函数优化函数线性回归模型从零开始实现生成数据集使用图像来展示生成的数据读取数据集定义模型初始化模型参数定义损失函数定义优化函数模型训练线性回归模型的pytorch实现生成数据集读取数据集定义模型初始化模型参数定义损失函数定义优化函数模型训练两种实现方式的比较线性回归的基本要素模型基本线性模型:Y=X⋅W+b\textbf{Y} = \textbf{...
2020-02-14 11:50:25 814
计算机专业英语教程
2019-03-02
Invent your own computer Games with python
2019-03-02
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人